We have used a transgenic cell line of Catharanthus roseus (L.) G. Don to study the relative importance of the supply of biosynthetic precursors for the synthesis of terpenoid indole alkaloids. Line S10 carries a recombinant, constitutively overexpressed version of the endogenous strictosidine synthase (Str) gene. Various concentrations and combinations of the substrate tryptamine and of loganin, the immediate precursor of secologanin, were added to suspension cultures of S10. Our results indicate that high rates of tryptamine synthesis can take place under conditions of low tryptophan decarboxylase activity, and that high rates of strictosidine synthesis are possible in the presence of a small tryptamine pool. It appears that the utilization of tryptamine for alkaloid biosynthesis enhances metabolic flux through the indole pathway. However, a deficiency in the supply of either the iridoid or the indole precursor can limit flux through the step catalyzed by strictosidine synthase. Precursor utilization for the synthesis of strictosidine depends on the availability of the cosubstrate; the relative abundance of these precursors is a cell-line-specific trait that reflects the metabolic status of the cultures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC35145 | PMC |
http://dx.doi.org/10.1104/pp.116.2.853 | DOI Listing |
Geroscience
January 2025
Division of Endocrinology, Department of Medicine, Augusta University, Augusta, GA, USA.
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is frequently associated with musculoskeletal complications, including sarcopenia and osteoporosis, which substantially impair patient quality of life. Despite these clinical observations, the molecular mechanisms linking AD to bone loss remain insufficiently explored. In this study, we examined the femoral bone microarchitecture and transcriptomic profiles of APP/PS1 transgenic mouse models of AD to elucidate the disease's impact on bone pathology and identify potential gene candidates associated with bone deterioration.
View Article and Find Full Text PDFSci Rep
January 2025
School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.
View Article and Find Full Text PDFPLoS One
January 2025
Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
Adult neurogenesis has most often been studied in the hippocampus and subventricular zone-olfactory bulb, where newborn neurons contribute to a variety of behaviors. A handful of studies have also investigated adult neurogenesis in other brain regions, but relatively little is known about the properties of neurons added to non-canonical areas. One such region is the striatum.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158.
The ε4 variant of human apolipoprotein E () is a key genetic risk factor for neurodegeneration in Alzheimer's disease and elevated all-cause mortality in humans. Understanding the factors and mechanisms that can mitigate the harmful effects of has significant implications. In this study, we find that inactivating the VHL-1 (Von Hippel-Lindau) protein can suppress mortality, neural and behavioral pathologies caused by transgenic human in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!