Muscle cells are frequently subjected to severe conditions caused by heat, oxidative, and mechanical stresses. The small heat shock proteins (sHSPs) such as alphaB-crystallin and HSP27, which are highly expressed in muscle cells, have been suggested to play roles in maintaining myofibrillar integrity against such stresses. Here, we identified a novel member of the sHSP family that associates specifically with myotonic dystrophy protein kinase (DMPK). This DMPK-binding protein, MKBP, shows a unique nature compared with other known sHSPs: (a) In muscle cytosol, MKBP exists as an oligomeric complex separate from the complex formed by alphaB-crystallin and HSP27. (b) The expression of MKBP is not induced by heat shock, although it shows the characteristic early response of redistribution to the insoluble fraction like other sHSPs. Immunohistochemical analysis of skeletal muscle cells shows that MKBP localizes to the cross sections of individual myofibrils at the Z-membrane as well as the neuromuscular junction, where DMPK has been suggested to be concentrated. In vitro, MKBP enhances the kinase activity of DMPK and protects it from heat-induced inactivation. These results suggest that MKBP constitutes a novel stress-responsive system independent of other known sHSPs in muscle cells and that DMPK may be involved in this system by being activated by MKBP. Importantly, since the amount of MKBP protein, but not that of other sHSP family member proteins, is selectively upregulated in skeletal muscle from DM patients, an interaction between DMPK and MKBP may be involved in the pathogenesis of DM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132705PMC
http://dx.doi.org/10.1083/jcb.140.5.1113DOI Listing

Publication Analysis

Top Keywords

muscle cells
16
heat shock
12
mkbp
10
novel member
8
small heat
8
myotonic dystrophy
8
dystrophy protein
8
protein kinase
8
alphab-crystallin hsp27
8
shsp family
8

Similar Publications

Sarcolemma resilience and skeletal muscle health require O-mannosylation of dystroglycan.

Skelet Muscle

January 2025

Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.

Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.

View Article and Find Full Text PDF

Exercise promotes peripheral glycolysis in skeletal muscle through miR-204 induction via the HIF-1α pathway.

Sci Rep

January 2025

Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea.

The mechanisms underlying exercise-induced insulin sensitization are of great interest, as exercise is a clinically critical intervention for diabetic patients. Some microRNAs (miRs) are secreted from skeletal muscle after exercise where they regulate insulin sensitivity, and have potential as diagnostic markers in diabetic patients. miR-204 is well-known for its involvement in development, cancer, and metabolism; however, its role in exercise-induced glycemic control remains unclear.

View Article and Find Full Text PDF

Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.

View Article and Find Full Text PDF

Alginate oligosaccharides (AOS) have gained attention for their capacity to regulate human health as prebiotics. Osteosarcopenia is a progressive disease of the musculoskeletal system and result in heavy burden of patients. Studies suggest that gut microbiota is involved in the pathogenesis of osteosarcopenia, whether AOS can improve the symptoms of osteosarcopenia by modulating gut microbiota remains to be elucidated.

View Article and Find Full Text PDF

Lipids contribute significantly to the flavor of cell-cultured fish meat as precursor components of flavor compounds. Here, we initially reported the differences in lipid metabolite profiles and volatile compounds between adipogenic differentiation of adipose stem cells (ASCs) and adipocytic transdifferentiation of muscle stem cells (MSCs) from large yellow croakers. A total of 2106 lipid metabolites were identified by UPLC-MS/MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!