The blade and sheath of a maize leaf are separated by a linear epidermal fringe, the ligule, and two wedge-like structures, the auricles. In plants homozygous for the null mutation, liguleless2-reference (lg2-R), the ligule and auricles are often absent or positioned incorrectly and the blade-sheath boundary is diffuse. This phenotype is in contrast to that of liguleless1-reference (lgl-R) mutant plants, which have a more defined boundary even in the absence of the ligule and auricles. Additionally, mosaic analysis indicates the lg2-R phenotype is cell-nonautonomous and the lg1-R phenotype is cell-autonomous. Using scanning electron microscopy we show that lg2-R mutant plants are affected before the first visible sign of ligule and auricle formation. We have cloned the Lg2+ gene through a Mutator-8 transposon insertion allele, and verified it with five independently derived alleles. The comparison of genomic DNA and cDNA sequences reveals an open reading frame encoding a protein of 531 amino acids with partial homology to a subclass of plant basic leucine zipper (bZIP) transcription factors. Although a large body of molecular and biochemical characterization exists on this subclass of bZIP proteins, our work represents the first report of a mutant phenotype within this group. A specific reverse transcriptase (RT)-PCR assay shows LG2 mRNA expression in meristem/developing ligule regions. RT-PCR also shows that LG2 mRNA accumulation precedes that of LG1 mRNA. The mutant phenotype and expression analysis of lg2 suggest an early role in initiating an exact blade-sheath boundary within the young leaf primordia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC316436PMC
http://dx.doi.org/10.1101/gad.12.2.208DOI Listing

Publication Analysis

Top Keywords

blade-sheath boundary
12
basic leucine
8
leucine zipper
8
ligule auricles
8
mutant plants
8
mutant phenotype
8
lg2 mrna
8
ligule
5
phenotype
5
maize gene
4

Similar Publications

Leaf angle regulation toward a maize smart canopy.

Plant J

January 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.

Dense planting of single-cross hybrids contributes to maize yield increase over the past decades. Leaf angle, an important agronomic trait relevant to planting density, plays a fundamental role in light penetration into the canopy and photosynthetic efficiency. Leaf angle is a key parameter of plant architecture in the concept of smart canopy.

View Article and Find Full Text PDF

In plants, mitogen activated protein kinases (MPKs) are involved in various signaling pathways that lead to biotic and abiotic responses as well as that regulate developmental processes. Among them, MPK6 and its closely related homologue, MPK3, act redundantly and are known to be involved in asymmetric cell divisions of meristemoid mother cells in stomata development and of zygotes in . Loss-of-function mutants of /, which is an orthologue of in rice, showed a defect in polarity establishment in early stage of embryogenesis.

View Article and Find Full Text PDF

Background: Rice leaves consist of three distinct regions along a proximal-distal axis, namely the leaf blade, sheath, and blade-sheath boundary region. Each region has a unique morphology and function, but the genetic programs underlying the development of each region are poorly understood. To fully elucidate rice leaf development and discover genes with unique functions in rice and grasses, it is crucial to explore genome-wide transcriptional profiles during the development of the three regions.

View Article and Find Full Text PDF

Developmental genetics of maize vegetative shoot architecture.

Mol Breed

March 2021

Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA.

Unlabelled: More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant.

View Article and Find Full Text PDF

The formation of developmental boundaries is a common feature of multicellular plants and animals, and impacts the initiation, structure and function of all organs. Maize leaves comprise a proximal sheath that encloses the stem, and a distal photosynthetic blade that projects away from the plant axis. An epidermally derived ligule and a joint-like auricle develop at the blade/sheath boundary of maize leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!