The present study was designed to examine the possible involvement of gamma-aminobutyric acid (GABA) neurotransmission in the mechanism of phencyclidine (1-(1-phenylcyclohexyl)piperidine; PCP)-induced dopamine release in the medial prefrontal cortex, using in vivo microdialysis in awake, freely moving rats. Local perfusion via the dialysis probe into the medial prefrontal cortex with PCP (100 and 500 microM) and dizocilpine ((+)-5-methyl-10,11-dihydroxy-5-H-dibenzo(a,d)cyclo-heptan-5,10-im ine; MK-801, 10 and 50 microM), a selective non-competitive NMDA receptor antagonist, was found to increase extracellular dopamine levels. Co-perfusion with NMDA (1 mM) or the GABAA receptor agonist muscimol (50 microM) attenuated the effects of PCP (500 microM) and MK-801 (50 microM) on extracellular dopamine levels. The dopamine reuptake inhibitor nomifensine (50 microM) also produced an increase in extracellular dopamine levels in the medial prefrontal cortex, but this effect was not affected by co-perfusion with muscimol (50 microM). On the other hand, local perfusion with PCP (100 and 500 microM) and MK-801 (10 and 50 microM), but not nomifensine (50 microM), reduced extracellular GABA levels in the medial prefrontal cortex. Co-perfusion with NMDA (1 mM) reduced the effects of PCP (500 microM) and MK-801 (50 microM) on extracellular GABA levels. These results suggest that PCP may facilitate dopamine release in the medial prefrontal cortex, at least in part, by the inhibition of GABA release via the antagonism of NMDA receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-2999(97)01435-0 | DOI Listing |
Sci Adv
January 2025
Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep for its revitalizing function, but the mechanism underlying sleep homeostasis remains poorly understood. Here, we show that optogenetic activation of locus coeruleus (LC) noradrenergic neurons immediately increased sleep propensity following a transient wakefulness, contrasting with many other arousal-promoting neurons whose activation induces sustained wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused a rapid reduction of calcium activity in LC neurons and steep declines in noradrenaline/norepinephrine (NE) release in both the LC and medial prefrontal cortex (mPFC).
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
Department of Clinical Neuropsychology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland.
Background: Metabolic-bariatric surgery (MBS) transcends weight loss and offers wide-ranging health benefits, including positive effects on brain function. However, the mechanisms behind these effects remain unclear, particularly in the context of significant postoperative changes in the inflammatory profile characteristic of MBS. Understanding how inflammation influences postoperative brain function can enhance our decision-making on patient eligibility for MBS and create new opportunities to improve the outcomes of this popular treatment.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.
Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by damage to cortical circuits. However, the mechanisms underlying AD-associated changes in long-range circuits remain poorly understood.
Methods: In this study, we used viral tracing and fluorescence micro-optical sectioning tomography (fMOST) imaging to investigate whole-brain changes in the input circuit of the frontal cortex of 5×FAD mice.
Alzheimers Dement
January 2025
Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.
Introduction: Visual short-term memory (VSTM) is a critical indicator of Alzheimer's disease (AD), but whether its neural substrates could adapt to early disease progression and contribute to cognitive resilience in amnestic mild cognitive impairment (aMCI) has been unclear.
Methods: Fifty-five aMCI patients and 68 normal controls (NC) performed a change-detection task and underwent multimodal neuroimaging scanning.
Results: Among the atrophic brain regions in aMCI, VSTM performance correlated with the volume of the right prefrontal cortex (PFC) but not the medial temporal lobe (MTL), and this correlation was mainly present in patients with greater MTL atrophy.
Commun Biol
January 2025
Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
The prefrontal cortex (PFC) is vital for higher cognitive functions and displays neuronal heterogeneity, with neuronal activity varying significantly across individual neurons. Using calcium imaging in the medial PFC (mPFC) of mice, we investigate whether differences in degree centrality-a measure of connectivity strength within local circuits-could explain this neuronal diversity and its functional implications. In young adults, neurons with high degree centrality, inferred from resting-state activity, exhibit reliable and stable action-plan selectivity during memory-guided tasks, suggesting that connectivity strength is closely linked to functional heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!