Inhibition of phosphorylation of the oxysterol binding protein by brefeldin A.

Biochim Biophys Acta

The Atlantic Research Centre and Departments of Pediatrics and Biochemistry, Dalhousie University, Halifax, NS.

Published: February 1998

Oxysterol binding protein (OSBP), a high affinity receptor for 25-hydroxycholesterol that localizes to a Golgi/vesicular compartment, migrated on SDS-PAGE as a doublet of 96 and 101 kDa. The reduced mobility of the upper band of this doublet is the result of phosphorylation on multiple serine residues. Phosphorylation of rabbit OSBP stably overexpressed in CHO-K1 cells was altered by staurosporine and okadaic acid, while other protein kinase activators and inhibitors such as TPA, sphingosine and bis-indolylmaleimide were without affect. Treatment of overexpressing and control cells with brefeldin A (BFA) caused dephosphorylation of OSBP that coincided with disruption of the Golgi apparatus. [32P]Phosphate pulse-chase and immunoprecipitation experiments showed that BFA inhibited phosphorylation of OSBP, but not its rate of dephosphorylation. Phosphopeptide maps of OSBP from overexpressing and control CHO-K1 cells were similar, and BFA promoted dephosphorylation of all five peptides. Compared to overexpressing cells, one tryptic phosphopeptide was more abundant in control CHO-K1 cells and was preferentially dephosphorylated by BFA treatment. OSBP was phosphorylated in vitro by the Golgi enriched fraction of CHO-K1 cells or rat liver by a staurosporine- and BFA-insensitive kinase. The phosphorylation status of OSBP was not affected by 25-hydroxycholesterol and did not alter in vitro 25-[3H]hydroxycholesterol binding. Furthermore, dephosphorylation of OSBP by staurosporine did not affect 25-hydroxycholesterol-mediated localization to the Golgi apparatus. Rapid phosphorylation/dephosphorylation of OSBP requires interaction with the Golgi apparatus and an associated kinase. (c) 1998 Elsevier Science B.V.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0005-2760(97)00167-7DOI Listing

Publication Analysis

Top Keywords

cho-k1 cells
16
golgi apparatus
12
osbp
9
oxysterol binding
8
binding protein
8
overexpressing control
8
dephosphorylation osbp
8
control cho-k1
8
cells
6
inhibition phosphorylation
4

Similar Publications

Potential Interaction of Pinocembrin with Drug Transporters and Hepatic Drug-Metabolizing Enzymes.

Pharmaceuticals (Basel)

January 2025

Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.

: Pinocembrin is a promising drug candidate for treating ischemic stroke. The interaction of pinocembrin with drug transporters and drug-metabolizing enzymes is not fully revealed. The present study aims to evaluate the interaction potential of pinocembrin with cytochrome P450 (CYP450: CYP2B6, CYP2C9, and CYP2C19) and drug transporters including organic anion transporters (OAT1 and OAT3), organic cation transporters (OCT1 and OCT2), multidrug and toxin extrusion (MATE1 and MATE2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP).

View Article and Find Full Text PDF

We present the first use of a bioengineered mammalian transposase system derived from Myotis lucifugus (bMLT) for integration of expression vectors into the CHO genome, focusing on GFP and trastuzumab production. Initially, CHO-K1 cells are transfected with a GFP reporter and varying amounts of bMLT DNA or mRNA. GFP expression is monitored over 17 weeks without selective pressure.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations.

View Article and Find Full Text PDF

Investigating subpopulation dynamics in clonal CHO-K1 cells with single-cell RNA sequencing.

J Biotechnol

January 2025

Johns Hopkins Biomedical Engineering, USA; Johns Hopkins University Department of Molecular Biology and Genetics, Baltimore, MD, USA; Johns Hopkins University Department of Medicine, Division of Infectious Disease, Baltimore, MD, USA. Electronic address:

Chinese Hamster Ovary (CHO) cells produce monoclonal antibodies and other biotherapeutics at industrial scale. Despite their ubiquitous nature in the biopharmaceutical industry, little is known about the behaviors of individual transfected clonal CHO cells. Most CHO cells are assessed on their stability, their ability to produce the protein of interest over time.

View Article and Find Full Text PDF

Discovery of a heparan sulfate binding domain in monkeypox virus H3 as an anti-poxviral drug target combining AI and MD simulations.

Elife

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!