Intracellular localization of specific mRNAs is known to be a mechanism for targeting proteins to specific sites within the cell. Previous studies from this laboratory have demonstrated co-localization of mRNAs and proteins for a number of genes in absorptive enterocytes of fetal rat intestine. The present study was undertaken to examine in human enterocytes the intracellular localization patterns of mRNAs for the microvillous membrane proteins lactase-phlorizin hydrolase (LPH), sucrase-isomaltase (SI), and intestinal alkaline phosphatase (IAP), and the cytoskeletal protein beta-actin. In sections of human jejunum, mRNAs were localized by in situ hybridization using digoxigenin-labeled anti-sense RNA probes. Both LPH and SI mRNAs were localized to the apical region of villous enterocytes, whereas IAP and beta-actin mRNAs were detected both apically and basally relative to the nucleus. Therefore, in contrast to LPH, SI, and beta-actin mRNAs, which co-localize with their encoded proteins, that of IAP is present in the basal region of the cell where IAP protein has not directly been demonstrated to be present. Absorptive enterocytes from humans possess the mechanisms for intracellular mRNA localization, but not all mRNAs co-localize with their encoded proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/002215549804600307 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!