We examined a possible mechanism to account for the maintenance of peak AMP deamination rate in fast-twitch muscle of rats fed the creatine analog beta-guanidinopropionic acid (beta-GPA), in spite of reduced abundance of the enzyme AMP deaminase (AMPD). AMPD enzymatic capacity (determined at saturating AMP concentration) and AMPD protein abundance (Western blot) were coordinately reduced approximately 80% in fast-twitch white gastrocnemius muscle by beta-GPA feeding over 7 wk. Kinetic analysis of AMPD in the soluble cell fraction demonstrated a single Michaelis-Menten constant (Km; approximately 1.5 mM) in control muscle extracts. An additional high-affinity Km (approximately 0.03 mM) was revealed at low AMP concentrations in extracts of beta-GPA-treated muscle. The kinetic alteration in AMPD reflects increased molecular activity at low AMP concentrations; this could account for high rates of deamination in beta-GPA-treated muscle in situ, despite the loss of AMPD enzyme protein. The elimination of this kinetic effect by treatment of beta-GPA-treated muscle extracts with acid phosphatase in vitro suggests that phosphorylation is involved in the kinetic control of skeletal muscle AMPD in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.1998.274.2.C465DOI Listing

Publication Analysis

Top Keywords

beta-gpa-treated muscle
12
muscle
8
amp deaminase
8
muscle extracts
8
low amp
8
amp concentrations
8
ampd
7
amp
6
molecular kinetic
4
kinetic alterations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!