AI Article Synopsis

  • Lysine 2,3-aminomutase is an enzyme that converts l-alpha-lysine and l-beta-lysine using an iron-sulfur cluster and requires PLP and AdoMet for its activity.
  • The enzyme functions through a radical rearrangement mechanism, starting with the formation of a lysyl-radical intermediate after hydrogen abstraction from C3 of lysine.
  • Research indicates that AdoMet interacts with the iron-sulfur cluster to generate a hydrogen-abstracting species, with reduced forms of the cluster exhibiting different activities, where the form with AdoMet is fully active for catalysis.

Article Abstract

Lysine 2,3-aminomutase catalyzes the interconversion of l-alpha-lysine and l-beta-lysine. The enzyme contains an iron-sulfur cluster with unusual properties, and it requires pyridoxal-5'-phosphate (PLP) and S-adenosylmethionine (AdoMet) for activity. The reaction proceeds by a substrate radical rearrangement mechanism, in which the external aldimine formed between PLP and lysine is initially converted into a lysyl-radical intermediate by hydrogen abstraction from C3. The present research concerns the mechanism by which a hydrogen-abstracting species is generated at the active site of lysine 2,3-aminomutase. Earlier tritium tracer experiments have implicated the 5'-deoxyadenosyl moiety of AdoMet in this process. AdoMet is here shown to interact with the iron-sulfur cluster at the active site of Clostridial lysine 2,3-aminomutase. Reduction of the iron-sulfur cluster from its EPR-silent form [4Fe-4S]2+ to the fully reduced form [4Fe-4S]1+ requires the presence of either AdoMet or S-adenosylhomocysteine (SAH) and a strong reducing agent such as dithionite or deazariboflavin and light. The reduced forms are provisionally designated E-[4Fe-4S]1+/AdoMet and E-[4Fe-4S]1+/SAH, and they display similar low-temperature EPR spectra centered at gav = 1.91. The reduced form E-[4Fe-4S]1+/AdoMet is fully active in the absence of any added reducing agent, whereas the form E-[4Fe-4S]1+/SAH is not active. It is postulated that the active form E-[4Fe-4S]1+/AdoMet is in equilibrium with a low concentration of a radical-initiating form that contains the 5'-deoxyadenosyl radical. Initiation of the radical rearrangement mechanism is postulated to take place by action of the 5'-deoxyadenosyl radical in abstracting a hydrogen atom from carbon-3 of lysine, which is bound as its external aldiminine with PLP. This process accounts for the results of tritium tracer experiments, it explains the radical rearrangement mechanism, and it rationalizes the roles of AdoMet and the [4Fe-4S] cluster in the reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi972417wDOI Listing

Publication Analysis

Top Keywords

lysine 23-aminomutase
16
iron-sulfur cluster
12
radical rearrangement
12
rearrangement mechanism
12
active site
8
tritium tracer
8
tracer experiments
8
reduced form
8
reducing agent
8
form e-[4fe-4s]1+/adomet
8

Similar Publications

PD-L1/PD-1 checkpoint inhibitors (CPIs) are mainstream agents for cancer immunotherapy, but the prognosis is unsatisfactory in solid tumor patients lacking preexisting T-cell reactivity. Adjunct therapy strategies including the intratumoral administration of immunostimulants aim to address this limitation. CpG oligodeoxynucleotides (ODNs), TLR9 agonists that can potentiate adaptive immunity, have been widely investigated to tackle PD-L1/PD-1 resistance, but clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure.

View Article and Find Full Text PDF

Detection and characterization of pathogenic Bacillus haynesii from Tribulus terrestris extract: ways to reduce its levels.

Braz J Microbiol

January 2025

Innovation and Drug Discovery, Sava Healthcare Limited, Research Center, MIDC, Block D1, Plot No. 17/6, Chinchwad, Pune, 411019, India.

Plant parts such as roots, bark, leaves, flowers, and fruits that hold ethnopharmacological significance are naturally prone to microbial contamination, influenced by environmental factors like moisture and humidity. This study focuses on assessing the microbial load in the raw material of Tribulus terrestris (TT). The primary bacterium isolated from the pulverized raw material was identified as Bacillus haynesii through 16S rRNA sequencing.

View Article and Find Full Text PDF

Background: Aggressive Variant Prostate Cancers (AVPCs) are incurable malignancies. Platinum-based chemotherapies are used for the palliative treatment of AVPC. The Polycomb Repressive Complex 2 (PRC2) promotes prostate cancer progression histone H3 Lysine 27 tri-methylation (H3K27me3).

View Article and Find Full Text PDF

SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) contributes to ~1.5% of human cancers, including lymphomas, gastric and nasopharyngeal carcinomas. In most of these, nearly 80 viral lytic genes are silenced by incompletely understood epigenetic mechanisms, precluding use of antiviral agents such as ganciclovir to treat the 200,000 EBV-associated cancers/year.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!