At least three different gene loci were recently shown to account for the long QT syndrome (LQTS), a monogenic disorder with altered myocardial repolarization and occurrence of life-threatening cardiac arrhythmias. We screened 44 unrelated probands for mutations of the gene encoding the cardiac potassium channel KVLQT1 using single-strand conformational polymorphism (SSCP) and subsequent DNA sequencing. Two different mutations, T182I and D188N, were identified in two separate pedigrees. Cosegregation of the mutation with the disease phenotype was evident in both families. No mutations were identified at codon 212, previously suggested to represent a mutational hot spot of the KVLQT1 channel, in any of the 44 probands. The large pedigree with the D188N mutation (30 affected and 43 nonaffected individuals) permitted an analysis of expression of the mutant gene in its documented carriers. Although the mean (+/-SD) QTc interval was markedly longer in affected (484+/-38 ms) than in nonaffected individuals (406+/-27 ms, P < 0.001), there was a marked overlapping of individual values in these two groups. QTc values in symptomatic and asymptomatic carriers of the mutant gene were not significantly different. In conclusion, we have identified two novel mutations of the KVLQT1 component of a cardiac potassium channel. Our data support the functional significance of the pore-S6 domain of this membrane protein and emphasize the diagnostic usefulness of DNA analyses in families with LQTS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1098-1004(1998)11:2<158::AID-HUMU9>3.0.CO;2-FDOI Listing

Publication Analysis

Top Keywords

mutant gene
12
long syndrome
8
novel mutations
8
mutations kvlqt1
8
expression mutant
8
cardiac potassium
8
potassium channel
8
nonaffected individuals
8
gene
6
mutations
5

Similar Publications

Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.

View Article and Find Full Text PDF

Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.

View Article and Find Full Text PDF

To investigate the impact of SMARCA4 mutations on the outcomes of patients with advanced lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutations. In the Memorial Sloan Kettering Cancer Center (MSK) MetTropism study, 960 patients with advanced EGFR-mutated lung adenocarcinoma were screened and included in the MSK cohort, composing of 313 males and 647 females, with a median [(, )] age of 64 (56, 72) years. A retrospective analysis was conducted on the data of 178 patients with advanced EGFR-mutated lung adenocarcinoma who received EGFR tyrosine kinase inhibitors (TKIs) treatment in the Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, from January 2018 to December 2022.

View Article and Find Full Text PDF

In our study, we aimed to identify new mutants resulting from ONSEN transposition in Arabidopsis thaliana by subjecting nrpd1 mutants to heat stress. We isolated a mutant with a significantly elongated hypocotyl, named "Long hypocotyl in ONSEN inserted line 1" (HYO1). This phenotype was heritable, with progeny consistently displaying longer hypocotyls than the wild type.

View Article and Find Full Text PDF

Modelling the human Coenzyme Q deficiency in Drosophila melanogaster.

Free Radic Biol Med

January 2025

Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain; CIBERER, U729, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

The interference of the expression of each of the genes involved in the synthesis of coenzyme Q (CoQ) in Drosophila melanogaster can help to understand the pathophysiology of CoQ-dependent mitochondrial diseases in humans. We have knocked-down all genes involved in the CoQ biosynthesis pathway at different temperatures to induce depletion of CoQ at different levels throughout the body and in a tissue-specific manner. The efficiency of the knockdowns was quantified by Q-RTPCR and determination of CoQ levels by HPLC-UV+ECD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!