Exposure to ultraviolet radiation of solar light is responsible for inflammation, premature skin aging and is the main cause of human skin carcinogenesis. While the noxious consequences of U.V. exposure are known, the molecular events triggered by this radiation are poorly understood. We observed that U.V.-A and U.V.-B irradiation of human keratinocytes induces the activation of tyrosine kinase pathways leading to the tyrosine phosphorylation of several cellular proteins. We also observed a stimulation of the Stress Activated Protein kinases (SAPKs), p38 and JNK, and an activation of the transcription factors AP-1 in response to U.V.-A and U.V.-B radiation. Furthermore, we clearly demonstrated that physiological U.V. doses are able to activate the Extracellular signal-Regulated Kinases, ERK1 and ERK2, which could explain the activation of the Ternary Complex Factor. Thus, in human keratinocytes, solar U.V. light activates multiple signalling pathways that could be involved in skin inflammation following U.V.-induced skin injury or in U.V.-induced skin carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1201536 | DOI Listing |
Chemphyschem
January 2025
South China University of Technology School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, 381 Wushan Road, 510640, Guangzhou, CHINA.
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials possess unique advantages of high-efficiency and narrowband emission, which have rapidly occupied an important position in the field of organic light-emitting diodes (OLEDs). In recent years, significant advancements have been made in the development of MR-TADF materials, particularly in achieving spectral narrowing for high-color-purity OLED applications. Based on diverse MR-TADF molecular skeletons, this review summarizes the primary molecular strategies to narrow spectrum by suppressing structural relaxation and intermolecular interactions.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
Background: Bed bugs are blood-feeders that rapidly proliferate into large indoor infestations. Their bites can cause allergies, secondary infections and psychological stress, among other problems. Although several tactics for their management have been used, bed bugs continue to spread worldwide wherever humans reside.
View Article and Find Full Text PDFChemSusChem
January 2025
CSIR Central Glass & Ceramic Research Institute, EMDD, 196 Raja S C Mullick Road, 700032, Kolkata, INDIA.
The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.
View Article and Find Full Text PDFEnviron Toxicol
January 2025
Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), 235/249 Vergueiro Street, Sao Paulo, SP, 01525000, Brazil.
This study aims to assess the effects of aquatic training (AT) and its combination with photobiomodulation (PBM) on cytokine synthesis and plantar muscle morphology during compensatory hypertrophy (H) in Wistar rats. H was induced by bilateral ablation of synergistic muscles, and PBM using a laser (780 nm). AT involved 60 min sessions, 5 times/week, for 7 and 14 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!