Objective: Hypokalemia and renal potassium (K) wasting are hallmarks of the group of disorders called Bartter's syndrome. The presence of hypomagnesemia and a low rate of excretion of calcium are currently used to characterize a subgroup of these patients as having Gitelman's syndrome (GS) in which the molecular lesion is a defect in the thiazide-sensitive NaCl cotransporter in the distal convoluted tubule. This study was undertaken to examine whether bicarbonaturia or hypomagnesemia exacerbates the kaliuresis in patients with GS.
Methods: Six patients with most of the diagnostic features of GS were examined. To examine the role of bicarbonaturia, the transtubular K concentration gradient (TTKG) was assessed before and after an oral load of NH4Cl which caused the urine pH to be < 6. To evaluate the role of hypomagnesemia, the TTKG was examined after an infusion of enough magnesium (Mg) to achieve normal levels of Mg in plasma for close to 24 h.
Results: The TTKG remained very high even when the pH of the urine was < 6.0. An infusion of Mg caused the TTKG to approach expected values for hypokalemia in 4 of 6 patients. The infusion of Mg was extended in 1 patient who had a sustained high TTKG for 24 h; the TTKG remained elevated for 96 h despite normal plasma Mg levels.
Conclusions: Bicarbonaturia does not play a critical role in maintaining the very high TTKG in these patients. The K wasting in 4 of 6 of these patients could largely be attributed to hypomagnesemia and/or Mg depletion. The plasma aldosterone level tended to be higher in patients who did not respond to the infusion of Mg. Therefore, these patients may not represent a homogeneous group with regard to the pathophysiology of their renal K wasting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000013303 | DOI Listing |
Am J Physiol Renal Physiol
December 2024
Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, 14080 Mexico.
The field of the with no lysine kinases (WNKs) regulation of the thiazide-sensitive NaCl cotransporter (NCC) began at the start of the century with the discovery that mutations in two members of the family, WNK1 and WNK4, resulted in a condition known as Familiar Hyperkalemic Hypertension (FHHt). Since FHHt is the mirror image of Gitelman's syndrome that is caused by inactivating mutations of the SLC12A3 gene encoding NCC, it was expected that WNKs modulated NCC activity and that the increased function of the cotransporter is the pathophysiological mechanism of FFHt. This turned out to be the case.
View Article and Find Full Text PDFBMC Nephrol
November 2024
Nephrology Division, Department of Internal Medicine, University of Utah Health, Salt Lake City, USA.
Am J Case Rep
November 2024
Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
J Hypertens
February 2025
Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padova, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!