To elucidate the complete gene structure and to identify new genes involved in the development of HLA class I antigen-associated diseases in the class I region of the human major histocompatibility complex on chromosome 6, a YAC clone (745D12) covering the 146-kb segment around the IkBL and MICA loci was isolated from a YAC library constructed from the B-cell line, BOLETH. A physical map of this region was constructed by isolation of overlapping cosmid clones derived from 745D12. Of these, five contiguous cosmids were chosen for DNA sequencing by the shotgun strategy to give a single contig of 146,601 bp from 2.8 kb telomeric of the IkBL gene to exon 6 of MICA. This region was confirmed to contain five known genes, IkBL, BAT1, MICB, P5-1, and HLA-X (class I fragment), from centromere to telomere, and their exon-intron organizations were determined. The 3.8-1 homologue gene (3.8-1-hom) showing 99.7% identity with the 3.8-1 cDNA clone, which was originally isolated using the 3.8-kb EcoRI fragment between the HLA-54/H and the HLA-G genes, was detected between MICA and MICB and was suggested to represent the cognate 3.8-1 genomic sequence from which the cDNA clone was derived. No evidence for the presence of expressed new genes could be obtained in this region by homology and EST searches or coding and exon prediction analyses. One TA microsatellite repeat spanning 2545 bases with as many as 913 repetitions was found on the centromeric side of the MICA gene and was indicated to be a potential hot spot for genetic recombination. The two segments of approximately 35 kb upstream of the MICA and MICB genes showed high sequence homology (about 85%) to each other, suggesting that segmental genome duplication including the MICA and MICB genes must have occurred during the evolution of the human MHC.

Download full-text PDF

Source
http://dx.doi.org/10.1006/geno.1997.5114DOI Listing

Publication Analysis

Top Keywords

mica micb
12
segment ikbl
8
ikbl mica
8
hla class
8
class region
8
cdna clone
8
micb genes
8
mica
7
genes
7
region
5

Similar Publications

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing.

View Article and Find Full Text PDF

Deep analysis of the major histocompatibility complex genetic associations using covariate analysis and haploblocks unravels new mechanisms for the molecular etiology of Elite Control in AIDS.

BMC Immunol

January 2025

Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.

Introduction: We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC).

Methods: A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR.

View Article and Find Full Text PDF

Background: Concurrent (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells.

Methods: Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA.

View Article and Find Full Text PDF

Introduction: Donors for patients requiring hematopoietic cell transplant (HCT) are selected based on matching genetic sequences encoding the antigen recognition domain of specific HLA loci. However, differences in transplant outcomes in fully matched unrelated HCT compared with sibling HCT suggest that other genetic regions within the major histocompatibility complex (MHC) may contribute to HCT outcomes.

Methods: We sequenced the non-classical MHC loci (NCML) HLA-E, -F, -G, -H, MICA and MICB on a well-characterized retrospective cohort of 157 unrelated donor/recipient HCT pairs to determine the extent of MHC mismatching in matched pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!