Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: A number of inflammatory and immune diseases are associated with vascular changes. Psoriasis, as an example, is a common inflammatory skin disease with dilation of capillaries as an early histological change. In more developed psoriatic lesions there is proliferation of blood vessels and neovascularization. The use of agents that target these vascular changes represents a novel therapeutic strategy in the treatment of inflammatory diseases. Since cartilage is an avascular tissue, it has been hypothesized that there may be factors found in cartilage that inhibit blood vessel formation.
Objective: The objectives of this study were 1) to determine whether extracts of cartilage could inhibit angiogenesis, and 2) since altered angiogenesis is associated with certain diseases, including psoriasis, to examine whether inhibition of angiogenesis could potentially contribute to the treatment of psoriasis.
Methods: Extracts of shark cartilage were prepared by homogenization and ultrafiltration to derive the active agent termed AE -941. This agent was tested for antiangiogenesis activity using the embryonic vascularization test, which is a modification of the ex vivo chick embryo culture (CAM). Since one of the first steps in angiogenesis is degradation by metalloproteinases of the basement membrane of capillaries, AE -941 was tested for collagenase activity using a fluorogenic peptide substrate. Anti-inflammatory properties were tested using a cutaneous irritation model in humans.
Results: A dose dependent inhibition in embryonic neovascularization as well as in collagenase activity by AE -941 was demonstrated. When test compounds were applied on the forearms of test subjects, AE -941 was shown to have anti-inflammatory properties. Anecdotal data suggested that topical AE -941 had a beneficial effect in psoriasis.
Conclusion: Our results show that AE -941 has anti-angiogenic and anti-inflammatory properties. Antiangiogenesis agents such as AE -941 provide an entirely new class of agents to treat cutaneous and systemic diseases associated with altered vascularity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/120347549800200307 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!