Many experimental designs require the chronic implantation of different elements destined to act as channels that facilitate the information conveyance between the brain and some external devices or vice versa. Electrodes for electrophysiological or electrochemical recording or brain stimulation, and guide shafts for drug administration or chemical monitoring of the extracellular space are the most common examples of channels serving those purposes. The stereotaxic implantation of one or more of those experimental tools in the same antero-posterior plane is relatively easy, but surgery is nonetheless more complicated when two or more elements have to be placed using totally different coordinates. In those cases the current strategy consists in the successive implantation of the elements, waiting for the hardening of the dental acrylic destined to fix one of them in place before dealing with the next. This procedure takes time, is considerably more laborious than surgery for single elements and is particularly difficult when the elements have to be implanted in close proximity. The present report describes a method that simplifies surgery for multiple intracerebral implantation and allows the simultaneous and exact placement of as many electrodes or guide shafts as is practical in any experimental design. The method requires the previous construction of a jig or template designed to temporarily hold the elements to be implanted, allowing them to assume and keep the same positional relationship that they should have when definitively in place within the skull. The design may vary according to the type of elements to be implanted and the coordinates required for each particular experiment, but here it is illustrated describing the assembly of a particular jig for the simultaneous implantation of guide shafts for ulterior microdialysis in the prefrontal cortex (PFC), nucleus accumbens (NAC) and striatum (STR). Some rules can be derived from this particular case to make the method a more general one and suitable for any combination of elements and stereotaxic coordinates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1385-299x(97)00039-1 | DOI Listing |
Eur J Trauma Emerg Surg
January 2025
Department of Trauma Surgery, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
Purpose: The aim of this study was to evaluate the feasibility of using patient-specific implants (PSI) for complex shaft corrective osteotomies in multiplanar deformities of long bones in the lower extremities. Additionally, it aimed to investigate the added value of these implants by quantifying surgical accuracy on postoperative CT, comparing their outcomes to two commonly used techniques: 3D virtual visualizations and 3D-printed surgical guides.
Methods: Six tibial and femoral shaft corrective osteotomies were planned and performed on three Thiel embalmed human specimen.
Cureus
December 2024
Otolaryngology, Universidad De Cartagena, Cartagena, COL.
In otolaryngology, training often involves simulation in animal specimens, human cadavers, and artificial models to facilitate learning surgical procedures, reducing the time needed to acquire essential skills. Simulated training has become integral to medical education, particularly in microsurgical techniques, such as microlaryngeal surgery. These procedures, also known as phonomicrosurgery, are performed on the vocal folds using microscopic visualization and precision instruments with long shafts and millimetric tips.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Orthopaedic Surgery, Atrium Health Musculoskeletal Institute, 2001 Vail Ave, Charlotte, NC, USA.
Background: Hip morphology variations, particularly in femoral neck shaft angle (NSA) and iliac wing width (IWW), have been associated with gluteal tendinopathy. However, the biomechanical implications of these morphological differences on gluteal muscle function are not well understood. This study investigates how NSA and IWW influence gluteal muscle forces, moment arms, and estimated tendon loads during walking, aiming to provide insights into the potential biomechanical pathways that may contribute to altered lateral hip loading patterns.
View Article and Find Full Text PDFClin Orthop Relat Res
December 2024
Naval Medical Center San Diego, San Diego, CA, USA.
Background: Femoroacetabular impingement (FAI) is a well-recognized cause of hip pain in adults. The hip-spine relationship between the femur, pelvis, and lumbosacral spine has garnered recent attention in hip arthroplasty. However, the hip-spine relationship has not been well described in patients with FAI.
View Article and Find Full Text PDFSci Rep
January 2025
Jizhong Energy Fengfeng Group Co., Ltd, Handan, 056200, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!