A CT-based Monte Carlo simulation tool for dosimetry planning and analysis.

Med Phys

Jonsson Comprehensive Cancer Center, Department of Radiation Oncology, University of California Los Angeles, 90024-6951, USA.

Published: January 1998

The Los Alamos code MCNP4A (Monte Carlo N-Particle version 4A) is currently used to simulate a variety of problems ranging from nuclear reactor analysis to boron neutron capture therapy. A graphical user interface has been developed that automatically sets up the MCNP4A geometry and radiation source requirements for a three-dimensional Monte Carlo simulation using computed tomography data. The major drawback for this dosimetry system is the amount of time to obtain a statistically significant answer. A specialized patch file has been developed that optimizes photon particle transport and dose scoring within the standard MCNP4A lattice geometry. The transport modifications produce a performance increase (number of histories per minute) of approximately 4.7 based upon a 6 MV point source centered within a 30 x 30 x 30 cm3 lattice water phantom and 1 x 1 x 1 mm3 voxels. The dose scoring modifications produce a performance increase of approximately 470 based upon a tally section of greater than 1 x 10(4) lattice elements and a voxel size of 5 mm3. Homogeneous and heterogeneous benchmark calculations produce good agreement with measurements using a standard water phantom and a high- and low-density heterogeneity phantom. The dose distribution from a typical mediastinum treatment planning setup is presented for qualitative analysis and comparison versus a conventional treatment planning system.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.598167DOI Listing

Publication Analysis

Top Keywords

monte carlo
12
carlo simulation
8
dose scoring
8
modifications produce
8
produce performance
8
performance increase
8
water phantom
8
treatment planning
8
ct-based monte
4
simulation tool
4

Similar Publications

Compared with uncomplicated urinary tract infections (UTIs), complicated UTIs (cUTIs) including acute pyelonephritis (AP) present with significant morbidity, a higher risk of treatment failure and typically require longer courses of treatment, or alternative antibiotics. The emergence of drug-resistant organisms represents a considerable challenge in the treatment of patients with cUTIs/AP and has limited antibiotic options. Carbapenems are considered the current last line of therapy, however, carbapenem resistance represents a growing problem.

View Article and Find Full Text PDF

Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.

View Article and Find Full Text PDF

Radiation therapy (RT) is widely used for cancer treatment but is found with side effects of radiation dermatitis and fibrosis thereby calling for timely assessment. Nevertheless, current clinical assessment methods are found to be subjective, prone to bias, and accompanied by variability. There is, therefore, an unmet clinical need to explore a new assessment technique, ideally portable and affordable, making it accessible to less developed regions too.

View Article and Find Full Text PDF

Monte Carlo-based realistic simulation of optical coherence tomography angiography.

Biomed Opt Express

January 2025

Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Optical coherence tomography angiography (OCTA) offers unparalleled capabilities for non-invasive detection of vessels. However, the lack of accurate models for light-tissue interaction in OCTA jeopardizes the development of the techniques to further extract quantitative information from the measurements. In this manuscript, we propose a Monte Carlo (MC)-based simulation method to precisely describe the signal formation of OCTA based on the fundamental theory of light-tissue interactions.

View Article and Find Full Text PDF

Many human diseases result from a complex interplay of behavioral, clinical, and molecular factors. Integrating low-dimensional behavioral and clinical features with high-dimensional molecular profiles can significantly improve disease outcome prediction and diagnosis. However, while some biomarkers are crucial, many lack informative value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!