AI Article Synopsis

Article Abstract

Two storage compartments in cultured noradrenergic neurons derived from the superior cervical ganglion from fetal pig have been defined using sucrose density gradient centrifugation and electron microscopy: (1) large dense-cored vesicles (LDV) contain noradrenaline and dopamine-beta-hydroxylase (DbetaH); (2) small electron-lucent vesicles contain acetylcholine and p38 and represent the noradrenergic small synaptic vesicles (SSV); no small dense-cored vesicles (SDV) could be detected. Our results demonstrate that internalized LDV membrane constituents are retrieved into early endosomes, as shown by the colocalization of retrieved DbetaH with the endosomal markers Rab5 and HRP in sucrose density gradients and on confocal microscopical images. Recycling of the SSV membranes via an endosomal intermediate is also confirmed in noradrenergic neurons. Finally, colocalization of retrieved DbetaH and retrieved p38 in stimulated neurons indicates that the two sets of constituents intermix. These data provide the first experimental evidence for a common early endosome in which SSV and LDV membrane constituents are internalized after exocytosis and imply that endosomal sorting is an important process for the generation of different secretory vesicles in the noradrenergic nerve terminal.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.111.6.681DOI Listing

Publication Analysis

Top Keywords

dense-cored vesicles
12
noradrenergic neurons
12
large dense-cored
8
synaptic vesicles
8
early endosomes
8
sucrose density
8
ldv membrane
8
membrane constituents
8
colocalization retrieved
8
retrieved dbetah
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!