The Raman spectroscopic technique enables us to obtain vibrational (IR and far-IR) spectra of minerals by analyzing scattered light caused by (visible or near-visible) monochromatic laser excitation. The method possesses several advantages over IR absorption, including simple sample preparation, easy spectral/band analysis, and linear-response to mineral/chemical concentrations. In micro-Raman spectrometer systems, samples are positioned under an optical microscope, and specimens can be scanned with a lateral resolution (approximately 1 mm). In this paper, recent applications of micro-Raman spectroscopy and near-infrared Fourier transform Raman spectroscopy in the study of dental hard tissues and of calculus are reviewed. Special attention is given to mineral components in enamel, dentin, and calculus, and to calcium fluoride formed in/on enamel. The results from the use of an Ar(+)-laser/grating-based micro-Raman spectrometer show that: CaF2 formed in/on enamel by APF treatment is detectable and different from pure CaF2; and with the technique, the crystallite orientation in enamel can be determined. A Raman spectrometer based on Fourier transform and a diode-laser-pumped Nd:YAG laser (1.06 mm) can be used to obtain fluorescence-free Raman signals from biological materials, and identification of mineral components present in dental calculus is possible.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08959374970110042301DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
8
micro-raman spectrometer
8
fourier transform
8
mineral components
8
formed in/on
8
in/on enamel
8
raman
5
spectroscopy dental
4
dental short
4
short review
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!