Glypicans are a member of a family of glycosylphosphatidylinositol anchored heparan sulfate proteoglycans that are expressed in cell and development specific patterns. Rat GPC1 cDNA probes were used to screen rat genomic libraries. Three overlapping genomic clones that contained the entire rat GPC1 gene were isolated. The rat GPC1 gene is approximately 15kb in length and consists of eight exons interrupted by introns of varying lengths. Two of the introns are quite short, with lengths of 41 and 43 base pairs. Each exon-intron splice junction exhibited the consensus splice site sequence. Exon 1 encodes the putative signal peptide and the serine residue of the first putative heparan sulfate attachment site. The last exon encodes the cluster of three potential COOH-terminal heparan sulfate attachment sites, the putative GPI anchor and polypeptide cleavage site, and the 3'-untranslated region including the polyadenylation signal. One of the genomic clones extended approximately 2.8 kb 5' of the exon 1 coding sequence, and is thus likely to contain sequences that regulate GPC1 gene expression. Sequence analysis of the 5'-flanking sequence revealed a lack of consensus TATA and CAAT boxes. A search for potential transcription factor binding sites revealed a number of such motifs, including Sp1 (GC box), NF-kappaB, and MyoD (E-box). This region of the rat GPC1 gene shows significant sequence homology to the 5'-flanking region of the human GPC3 gene. Functional promoter activity of the rat GPC1 sequence was demonstrated by its ability to drive the expression of a luciferase reporter gene in several cell types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-1119(97)00594-5 | DOI Listing |
Cardiovasc Res
May 2021
Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
Aims: Arterial stiffness is an underlying risk factor and a hallmark of cardiovascular diseases. The endothelial cell (EC) glycocalyx is a glycan rich surface layer that plays a key role in protecting against EC dysfunction and vascular disease. However, the mechanisms by which arterial stiffness promotes EC dysfunction and vascular disease are not fully understood, and whether the mechanism involves the protective endothelial glycocalyx is yet to be determined.
View Article and Find Full Text PDFTransl Psychiatry
January 2019
Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
Abnormalities of posttranslational protein modifications (PTMs) have recently been implicated in the pathophysiology of schizophrenia. Glycosylphosphatidylinositols (GPIs) are a class of complex glycolipids, which anchor surface proteins and glycoproteins to the cell membrane. GPI attachment to proteins represents one of the most common PTMs and GPI-associated proteins (GPI-APs) facilitate many cell surface processes, including synapse development and maintenance.
View Article and Find Full Text PDFPLoS One
June 2017
Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.
Pressure overload is a frequent cause of heart failure. Heart failure affects millions of patients worldwide and is a major cause of morbidity and mortality. Cell surface proteoglycans are emerging as molecular players in cardiac remodeling, and increased knowledge about their regulation and function is needed for improved understanding of cardiac pathogenesis.
View Article and Find Full Text PDFGlycobiology
December 2013
Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group.
The amyloid beta (Aβ) peptides (mainly Aβ40 and Aβ42), which are derived from the amyloid precursor protein (APP), can oligomerize into antibody A11-positive, neurotoxic species, believed to be involved in Alzheimer's disease. Interestingly, APP binds strongly to the heparan sulfate (HS) proteoglycan (PG) glypican-1 (Gpc-1) in vitro and both proteins are colocalized inside cells. In endosomes, APP is proteolytically processed to yield Aβ peptides.
View Article and Find Full Text PDFThe goal of the current work is to study the molecular mechanisms underlay the action of 5- amino-exo-3-azatricyclo[5.2.1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!