Objectives: Our purpose was to characterize the histologic changes in the asphyxiated fetal lamb brain and to correlate the severity of these changes with fetal physiologic parameters during and after asphyxia.
Study Design: Seventeen near-term fetuses were used for analysis: control group without manipulation (n = 4, 132 +/- 1.1 days of gestation at autopsy, mean +/- SEM), sham-asphyxia control group (n = 3, 132 +/- 1.3 days), and asphyxiated group, which successfully survived 72 hours after asphyxia (n = 10, 130 +/- 1.0 days). Asphyxia was produced by umbilical cord occlusion lasting for approximately 60 minutes until fetal arterial pH diminished to < 6.9 and base excess to < -20 mEq/L. Fetal heart rate, blood pressure, and electrocorticographic activity were continuously monitored. The fetuses were killed 72 hours after asphyxia, and the brains were fixed in formalin and processed for histologic and immunocytochemical studies.
Results: Neuropathologic changes varied from case to case, ranging from almost total infarction of cortical and subcortical structures to extremely subtle and patchy white matter alterations characterized by slight vacuolization of the white matter or slight to moderate increases in cellularity confined to the junction of cerebral cortex and white matter. Even fetuses that showed full recovery of all physiologic parameters, including electrocorticographic activity, demonstrated subtle but distinct white matter lesions. The gray matter, including the hippocampal neurons, was generally spared in these cases. Electrocorticographic parameters, duration of hypotension during asphyxia, and delayed recovery of blood lactate concentrations correlated well with the histologic grading of brain damage.
Conclusions: Asphyxia by partial umbilical cord occlusion in near-term fetal lambs produces variable neuropathologic changes. The mildest change is a white matter lesion characterized by vacuolization and loss of myelin or by increased cellularity in the damaged regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0002-9378(98)70621-0 | DOI Listing |
J Neuroimaging
January 2025
Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
Background And Purpose: Peak width of skeletonized mean diffusivity (PSMD) is a novel marker of white matter damage, which may be related to small vessel disease. This study aimed to investigate the presence of white matter damage in patients with isolated rapid eye movement sleep behavior disorder (RBD) using PSMD.
Methods: We enrolled patients with newly diagnosed isolated RBD confirmed by polysomnography and age- and sex-matched healthy controls.
Alzheimers Dement
December 2024
Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA.
Background: Neurite degeneration is increasingly suspected to represent a causal feature of mild cognitive impairment (MCI) and Alzheimer's disease (AD). Therefore, sensitive and specific imaging biomarkers of neuronal degeneration are needed to elucidate the mechanisms underlying cognitive impairment in MCI and AD. However, the recently developed Neurite Orientation Dispersion and Density Imaging (NODDI) MRI technique, used to measure the neurite density index (NDI), has some limitations.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, USA.
Background: Diffusion magnetic resonance imaging (dMRI) permits characterizing differences in white matter microstructure associated with amnestic mild cognitive impairment (aMCI) and Alzheimer's dementia (AD). However, most dMRI measures aggregate signals across multiple axonal fiber populations with varying spatial orientations, which limits the sensitivity and specificity of clinical diagnosis. To overcome this shortcoming, we estimated fiber density (FD) measures, independently from crossing fiber populations, and extracellular cerebral spinal fluid (CSF).
View Article and Find Full Text PDFBackground: Reactive astrogliosis refers to functional and morphological changes in astrocytes that occur with neuronal damage in numerous neurological conditions. PET tracers targeting monoamine oxidase B (MAO-B) are used to visualize reactive astrogliosis in the living brain. [F]SMBT-1, a MAO-B selective PET tracer, was developed by modifying the chemical structure of [F]THK5351.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
AdventHealth Research Institute, Neuroscience, Orlando, FL, USA.
Background: Aging is associated with heightened systemic inflammation, decline in selective aspects of cognition, and an increase in white matter lesions (WMLs). Both WMLs and systemic inflammation have been related to cognition. However, it is not clear how they interdependently relate to cognitive aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!