To investigate tissue-specific relations between DNA adducts and mutagenesis in vivo, lambda lacZ transgenic mice were treated i.p. with N-ethyl-N-nitrosourea (ENU), diethylnitrosamine (DEN), and ethyl methanesulphonate (EMS). In liver, bone marrow, and brain DNA from mice sacrificed at several time points after treatment O6-ethylguanine (O6-EtG) and N7-ethylguanine (N7-EtG) levels were determined as well as the mutant frequency (MF) in lacZ. In liver DNA of ENU- and DEN-treated mice, the bulk of O6-EtG was removed at 3 days after treatment, while the MF continued to increase thereafter. This suggests that O6-EtG is not the major premutagenic lesion in the liver. Indeed, sequence analysis of mutants showed only 24% GC-->AT transitions, consistent with the O6-EtG lesion, and 28% TA-->AT transversions, expected from O2-ethylthymine. In bone marrow after ENU treatment, a maximum mutation induction occurred at 3 days post-treatment, of which 43% were GC-->AT mutations and 22% were TA-->AT mutations. This suggests that in bone marrow O6-EtG may be a major premutagenic lesion at the 3-day time point. In liver and bone marrow, EMS treatment gave rise to a high level of N7-EtG and a low level of O6-EtG but no increase in MF. No adducts or mutation induction were observed in bone marrow of DEN-treated mice. No MF increase was observed in the brain of either ENU- or EMS-treated mice, although O6- and N7-adducts were present.
Download full-text PDF |
Source |
---|
Virol J
January 2025
Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Background: Neutropenia frequently presents as a hematological manifestation among people living with HIV/AIDS (PLWHA). This study explores the factors associated with neutropenia in PLWHA and its prognostic significance.
Methods: We conducted a retrospective case-control study of the clinical data from 780 cases of individuals living with HIV/AIDS, who were admitted to Zhongnan Hospital of Wuhan University over the period from January 2016 to September 2020.
Commun Med (Lond)
January 2025
Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.
Background: Multiple sulfatase deficiency (MSD) is an exceptionally rare neurodegenerative disorder due to the absence or deficiency of 17 known cellular sulfatases. The activation of all these cellular sulfatases is dependent on the presence of the formylglycine-generating enzyme, which is encoded by the SUMF1 gene. Disease-causing homozygous or compound heterozygous variants in SUMF1 result in MSD.
View Article and Find Full Text PDFPediatr Blood Cancer
January 2025
Blood and Marrow Transplant/Cellular Therapy Program, Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.
With advances in conditioning strategies and graft-versus-host disease (GvHD) prevention, hematopoietic stem cell transplantation (HSCT) is a safe, curative treatment option for pediatric patients with sickle cell disease (SCD). However, donor options have been limited in non-myeloablative matched sibling donor (MSD) setting by excluding recipients with major ABO blood group incompatible donors due to concern of the risk of significant complications such as pure red cell aplasia (PRCA). We present three cases of successful HSCT with major ABO incompatibility with their donors, and discuss strategies to safely expand the donor pool to include these donors.
View Article and Find Full Text PDFImmunol Cell Biol
January 2025
The Babraham Institute, Babraham Hall, Cambridge, UK.
This report presents findings from a group of UK-based researchers with expertise in the use of animal models for bone marrow ablation and reconstitution. The primary aim is to facilitate the implementation of the Three Rs (Replacement, Reduction and Refinement), with an emphasis on refinement. Bone marrow ablation and reconstitution procedures are performed for a number of different purposes and conducted predominantly in mice.
View Article and Find Full Text PDFEur Respir J
January 2025
Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
Rationale: Although a relationship between the Gas6/AXL pathway and pulmonary fibrosis (PF) has been suggested, the precise mechanisms and clinical implications of the AXL pathway in idiopathic pulmonary fibrosis (IPF) are still unclear.
Methods: Constitutive and conditional AXL-knockout mice were generated and injected with bleomycin (BLM) to induce pulmonary fibrosis. The expression of AXL and macrophage subtypes in BLM-injected mice and patients with IPF was analysed using flow cytometry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!