A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial basement membrane. However, when injected into nude mice, both control and NCAM-expressing cell lines produced equally invasive tumors. Tumors generated from NCAM-transfected cells were heterogeneous, containing NCAM-positive as well as NCAM-negative areas, indicating the existence of host factors capable of modulating NCAM expression in vivo. In nude mice, NCAM-transfected cells developed tumors with longer latency periods and slower growth rates than tumors induced by NCAM-negative control cells, implying that NCAM may be involved not only in adhesive and motile behavior of tumor cells but also in their growth regulation. There was no indication of differences in cell proliferative characteristics between the different NCAM-transfected and the control transfected cells as determined by flow cytometric DNA analysis, suggesting an increased cell loss as the reason for decreased in vivo growth rate of the NCAM-transfected cells. The fact that NCAM expression influences growth regulation attributes a pivotal role to this cell adhesion molecule during ontogenesis and tumor development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1699-0463.1997.tb05103.xDOI Listing

Publication Analysis

Top Keywords

ncam-transfected cells
12
cancer cell
8
cell adhesion
8
adhesion molecule
8
nude mice
8
ncam expression
8
growth regulation
8
cell
7
cells
6
ncam
5

Similar Publications

Expression of the neural cell adhesion molecule (NCAM) on malignant cells of neuroendocrine, epithelial and hematopoeitic origin has been reported, but its role for tumor cell recognition by the immune system remained uncertain so far. We have studied the cytotoxicity of the natural killer (NK) cell line NK92 and polyclonal NK cells from different donors, against NCAM-deficient and NCAM-transfected tumors. While the pancreatic carcinoma PANC-1 and the glioblastoma T98G showed no enhanced susceptibility to NK lysis after NCAM transfection, de novo NCAM expression in HeLa cervical carcinoma, SHEP neuroblastoma and the multiple myeloma lines RPMI-8226 and LP-1 was associated with significantly decreased lysis by NK cells.

View Article and Find Full Text PDF

Transmembrane forms of neural cell adhesion molecule (NCAM140, NCAM180(1)) are key regulators of neuronal development. The extracellular domain of NCAM can occur as a soluble protein in normal brain, and its levels are elevated in neuropsychiatric disorders, such as schizophrenia; however the mechanism of ectodomain release is obscure. Ectodomain shedding of NCAM140, releasing a fragment of 115 kD, was found to be induced in NCAM-transfected L-fibroblasts by the tyrosine phosphatase inhibitor pervanadate, but not phorbol esters.

View Article and Find Full Text PDF

The neural cell adhesion molecule (NCAM) is involved in development of the nervous system, in brain plasticity associated with learning and memory, and in neuronal regeneration. NCAM regulates these processes by influencing cell adhesion, cell migration, and neurite outgrowth. NCAM activates intracellular signaling upon homophilic NCAM binding, and this is a prerequisite for NCAM-stimulated neurite outgrowth.

View Article and Find Full Text PDF

The neural cell adhesion molecule (NCAM) plays an important role in synaptic plasticity in embryonic and adult brain. Recently, it has been demonstrated that NCAM is capable of binding and hydrolyzing extracellular ATP. The purpose of the present study was to evaluate the role of extracellular ATP in NCAM-mediated cellular adhesion and neurite outgrowth.

View Article and Find Full Text PDF

Effect of NCAM-transfection on growth and invasion of a human cancer cell line.

APMIS

December 1997

Research Center for Medical Biotechnology, University of Copenhagen, Panum Institute, Denmark.

A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial basement membrane. However, when injected into nude mice, both control and NCAM-expressing cell lines produced equally invasive tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!