A novel protein complex promoting formation of functional alpha- and gamma-tubulin.

EMBO J

Max-Planck Institut für Biochemie, Martinsried, Germany.

Published: February 1998

We describe the identification of GIM1/YKE2, GIM2/PAC10, GIM3, GIM4 and GIM5 in a screen for mutants that are synthetically lethal with tub4-1, encoding a mutated yeast gamma-tubulin. The cytoplasmic Gim proteins encoded by these GIM genes are present in common complexes as judged by co-immunoprecipitation and gel filtration experiments. The disruption of any of these genes results in similar phenotypes: the gim null mutants are synthetically lethal with tub4-1 and super-sensitive towards the microtubule-depolymerizing drug benomyl. All except Deltagim4 are cold-sensitive and their microtubules disassemble at 14 degrees C. The Gim proteins have one function related to alpha-tubulin and another to Tub4p, supported by the finding that the benomyl super-sensitivity is caused by a reduced level of alpha-tubulin while the synthetic lethality with tub4-1 is not. In addition, GIM1/YKE2 genetically interacts with two distinct classes of genes, one of which is involved in tubulin folding and the other in microtubule nucleation. We show that the Gim proteins are important for Tub4p function and bind to overproduced Tub4p. The mammalian homologues of GIM1/YKE2 and GIM2/PAC10 rescue the synthetically lethal phenotype with tub4-1 as well as the cold-sensitivity and benomyl super-sensitivity of the yeast deletion mutants. We suggest that the Gim proteins form a protein complex that promotes formation of functional alpha- and gamma-tubulin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170445PMC
http://dx.doi.org/10.1093/emboj/17.4.952DOI Listing

Publication Analysis

Top Keywords

gim proteins
16
synthetically lethal
12
protein complex
8
formation functional
8
functional alpha-
8
alpha- gamma-tubulin
8
gim1/yke2 gim2/pac10
8
mutants synthetically
8
lethal tub4-1
8
benomyl super-sensitivity
8

Similar Publications

GIM/FP/GP: [Formula: see text] Endocrinology: [Formula: see text].

View Article and Find Full Text PDF

GIM/FP/GP: [Formula: see text] Allerg & Immunol: [Formula: see text] Pulmonology: [Formula: see text].

View Article and Find Full Text PDF

As molecular research on hemp (Cannabis sativa L.) continues to advance, there is a growing need for the accumulation of more diverse genome data and more accurate genome assemblies. In this study, we report the three-way assembly data of a cannabidiol (CBD)-rich cannabis variety, 'Pink Pepper' cultivar using sequencing technology: PacBio Single Molecule Real-Time (SMRT) technology, Illumina sequencing technology, and Oxford Nanopore Technology (ONT).

View Article and Find Full Text PDF

Regulation of human interferon signaling by transposon exonization.

Cell

December 2024

BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA. Electronic address:

Innate immune signaling is essential for clearing pathogens and damaged cells and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2.

View Article and Find Full Text PDF

Lower hepatotoxicity risk in Xelaglifam, a novel GPR40 agonist, compared to Fasiglifam for type 2 diabetes therapy.

Biomed Pharmacother

December 2024

College of Pharmacy, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326, Republic of Korea. Electronic address:

Fasiglifam, a candidate targeting GPR40, showed efficacy in clinical trials for type 2 diabetes but exerted liver toxicity. This study investigated the drug-induced liver injury (DILI) risk of Xelaglifam, a new GPR40 agonist, based on the potential toxicity mechanism of Fasiglifam; transporter inhibition, mitochondrial dysfunction, reactive metabolite formation, and covalent binding to proteins. In the hepatobiliary transporter assay, Xelaglifam showed a broader safety margin (>10-fold) against bile acid transporters, suggesting its less likelihood to cause bile acids accumulation, unlike Fasiglifam (<10-fold safety margin).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!