A radiochemical enzyme assay for studying cyclooxygenase (COX)-catalyzed prostaglandin biosynthesis in vitro was optimized with respect to both COX-1 and COX-2 activity. The assay can be used to assess the relative selectivity of plant-derived inhibitors on COX-1 and COX-2 Assay conditions were optimized for both enzymes with respect to concentration of cofactors (l-epinephrine, reduced glutathione, and hematin), activation time (enzyme and cofactors), reaction time, and pH. Moreover, the kinetic parameters, Km and Kcat, of both enzymes were estimated. Five COX inhibitors were used to validate the assay, indomethacin, aspirin, naproxen, ibuprofen, and the arylsulfonamide NS-398, all with different COX selectivity and time dependency. Time-dependent inhibition was determined by comparing the inhibition, with and without preincubation of enzyme and inhibitor. Two flavonoids, (+)-catechin and quercitrin, were examined with respect to inhibition of COX-catalyzed prostaglandin biosynthesis. (+)-Catechin showed equal inhibitory effects on the two enzymes. Quercitrin was found to be inactive toward both COX-1- and COX-2-catalyzed prostaglandin biosynthesis. The optimization procedure resulted in a considerable reduction of the amount of enzyme required for adequate prostglandin biosynthesis and a reliable method suited to evaluate natural products on inhibition of COX-2-catalyzed prostaglandin biosynthesis, as well as on COX-1.

Download full-text PDF

Source
http://dx.doi.org/10.1021/np970343jDOI Listing

Publication Analysis

Top Keywords

prostaglandin biosynthesis
20
natural products
8
cox-catalyzed prostaglandin
8
cox-1 cox-2
8
cox-2-catalyzed prostaglandin
8
biosynthesis
6
assay
5
prostaglandin
5
development radiochemical
4
radiochemical cyclooxygenase-1
4

Similar Publications

Platelets as crucial players in the dynamic interplay of inflammation, immunity, and cancer: unveiling new strategies for cancer prevention.

Front Pharmacol

December 2024

Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.

Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.

View Article and Find Full Text PDF

The anti-PD-1 mAb may be further considered along with PGD2 or active molecules that can promote PGD2 synthesis to enhance the anti-tumor immune response.

View Article and Find Full Text PDF

Hyperoxia-activated Nrf2 regulates ferroptosis in intestinal epithelial cells and intervenes in inflammatory reaction through COX-2/PGE2/EP2 pathway.

Mol Med

January 2025

Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China.

The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo.

View Article and Find Full Text PDF

Crisdesalazine alleviates inflammation in an experimental autoimmune encephalomyelitis multiple sclerosis mouse model by regulating the immune system.

BMC Neurosci

January 2025

Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.

Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells.

View Article and Find Full Text PDF

The effect of long-chain n-3 PUFA on liver transcriptome in human obesity.

Prostaglandins Leukot Essent Fatty Acids

December 2024

Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria; Department of Medicine III and Karl Landsteiner Institute for Metabolic Diseases and Nephrology, Clinic Hietzing, Vienna, Austria. Electronic address:

Background And Aims: Obesity is associated with a higher risk of severe diseases such as atherosclerotic cardiovascular disease, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Polyunsaturated fatty acids, of the omega-3 family (n-3 PUFA), have been shown to reduce adipose tissue inflammation in obesity, as well as to have lipid-lowering effects and improve insulin sensitivity. However, direct effects on liver transcriptome in humans have not been described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!