Following exposure of cells to stimuli that trigger programmed cell death (apoptosis), cytochrome c is rapidly released from mitochondria into the cytoplasm where it activates proteolytic molecules known as caspases that specifically cleave the amino-acid sequence DEVD and are crucial for the execution of apoptosis. The protein Bcl-2 interferes with this activation of caspases by preventing the release of cytochrome c. Here we study these molecular interactions during apoptosis induced by the protein Bax, a pro-apoptotic homologue of Bcl-2. We show that in cells transiently transfected with bax, Bax localizes to mitochondria and induces the release of cytochrome c, activation of caspase-3, membrane blebbing, nuclear fragmentation, and cell death. Caspase inhibitors do not affect Bax-induced cytochrome c release but block caspase-3 activation and nuclear fragmentation. Unexpectedly, Bcl-2 also fails to prevent Bax-induced cytochrome c release, although it co-localizes with Bax to mitochondria. Cells overexpressing both Bcl-2 and Bax show no signs of caspase activation and survive with significant amounts of cytochrome c in the cytoplasm. These findings indicate that Bcl-2 can interfere with Bax killing downstream of and independently of cytochrome c release.

Download full-text PDF

Source
http://dx.doi.org/10.1038/35160DOI Listing

Publication Analysis

Top Keywords

release cytochrome
12
cytochrome release
12
cytochrome
8
cell death
8
nuclear fragmentation
8
bax-induced cytochrome
8
bcl-2
6
release
6
bax
6
bcl-2 prolongs
4

Similar Publications

Polychlorinated biphenyls (PCBs) are persistent organic pollutants emitted during e-waste activities. Upon release into the environment, PCBs can pose harmful effects to the humans and environment. The present review focused on the effects of PCBs on cell proliferation, apoptosis, functional and developmental toxicity and potential possible molecular mechanisms upon cells and stem cells.

View Article and Find Full Text PDF

Exploring the Anticancer Potential of MonoHER (7-Mono-O-(β-Hydroxyethyl)-Rutoside): Mitochondrial-Dependent Apoptosis in HepG2 Cells.

Curr Issues Mol Biol

January 2025

The M-Lab, Department of Precision Medicine, GROW-Research Institute for Oncology and Reproduction, Maastricht University, 6200MD Maastricht, The Netherlands.

Background/aim: Flavonoids are a group of polyphenols, abundantly present in our diet. Although, based on their chemoprotective effects, intake of flavonoids is associated with a high anticancer potential as evidenced in in vitro and in vivo models, the molecular mechanism is still elusive. This study explores the antiproliferative and cytotoxic effects of the semi-synthetic flavonoid MonoHER (7-mono-O-(β-hydroxyethyl)-rutoside) in vitro on cancer cells.

View Article and Find Full Text PDF

A novel genotype of Babesia microti-like group in Ixodes montoyanus ticks parasitizing the Andean bear (Tremarctos ornatus) in Ecuador.

Exp Appl Acarol

January 2025

Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay.

Babesia species (Piroplasmida) are hemoparasites that infect erythrocytes of mammals and birds and are mainly transmitted by hard ticks (Acari: Ixodidae). These hemoparasites are known to be the second most common parasites infecting mammals, after trypanosomes, and some species may cause malaria-like disease in humans. Diagnosis and understanding of Babesia diversity increasingly rely on genetic data obtained through molecular techniques.

View Article and Find Full Text PDF

Background: Mitochondria, as the energy factories of cells, are involved in a wide range of vital activities, including cell differentiation, signal transduction, the cell cycle, and apoptosis, while also regulating cell growth. However, current pharmacological treatments for stroke are challenged by issues such as drug resistance and side effects, necessitating the exploration of new therapeutic strategies.

Objective: This review aims to summarize the regulatory effects of natural compounds targeting mitochondria on neuronal mitochondrial function and metabolism, providing new perspectives for stroke treatment.

View Article and Find Full Text PDF

Advanced 3D bioprinted liver models with human-induced hepatocytes for personalized toxicity screening.

J Tissue Eng

January 2025

Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Institutes of Health Science, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

The development of advanced models for assessing liver toxicity and drug responses is crucial for personalized medicine and preclinical drug development. 3D bioprinting technology provides opportunities to create human liver models that are suitable for conducting high-throughput screening for liver toxicity. In this study, we fabricated a humanized liver model using human-induced hepatocytes (hiHeps) derived from human fibroblasts via a rapid and efficient reprogramming process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!