Estradiol induces vascular endothelial growth factor (VEGF) expression in the rat uterus and this may contribute to the hyperemia and increased vascularity produced by estrogens in this target tissue. Triphenylethylene antiestrogens such as tamoxifen have mixed agonist/antagonist activity and their specific effects are tissue and gene specific. These drugs exhibit primarily antiestrogenic actions in mammary tissue and are thus used for the treatment of breast cancer. These drugs are also suggested to be inhibitors of angiogenesis. However, uterine side effects of tamoxifen are thought to stem largely from the agonist activity of the drug in this tissue. Since side effects of tamoxifen such as uterine bleeding and endometrial cancer seem likely to have an angiogenic component, we have examined the effects of this drug, its metabolite, 4-hydroxy-tamoxifen and two additional triphenylethylene antiestrogens, nafoxidine and clomiphene, on the expression of VEGF and another estrogen regulated gene, c-fos, using the rat uterus as an experimental system. All four compounds increase uterine VEGF and c-fos mRNA levels indicating that the triphenylethylene class of antiestrogens are predominantly agonists for the induction of these genes in the uterus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-3835(97)00306-6DOI Listing

Publication Analysis

Top Keywords

triphenylethylene antiestrogens
12
vascular endothelial
8
endothelial growth
8
growth factor
8
agonist activity
8
rat uterus
8
side effects
8
effects tamoxifen
8
triphenylethylene
4
antiestrogens induce
4

Similar Publications

Being the most frequently diagnosed disease, breast cancer is mainly classified as ER+ cancers due to the detection of estrogen receptor (ER) expression. Irrespetive of the successes achieved in the treatment of ER+ cancers by the use of selective estrogen receptor modulator (SERM) drugs like tamoxifen, resistance to the drug is a major clinical obstacle. Working on alternative treatment approaches, here, on the basis of mode of action of aromatase for the conversion of androstenedione to oestrogen, a series of compounds was developed.

View Article and Find Full Text PDF

Photoactivatable probes can switch fluorescence on from a weak or nonemission state to improve the sensitivity of the sensing system. In this work, we successfully constructed three highly emissive photoactivatable probes, 2-DP, 1-2-DP and 2-2-DP, for Cu detection. Under UV irradiation, the photoluminescence quantum yields of 2-DP, 1-2-DP and 2-2-DP display approximately 52.

View Article and Find Full Text PDF

Tamoxifen, a triphenylethylene-based selective estrogen-receptor modulator, is a landmark drug for the treatment of breast cancer and is also used for treating liver cancer and osteoporosis. Structural studies of tamoxifen have led to the synthesis of more than 20 novel tamoxifen analogs as receptor modulators, including 16 ERα modulators , an ERRβ inverse agonist and six ERRγ inverse agonists -. This paper summarizes the research progress and structure-activity relationships of tamoxifen analogs modulating these three nuclear receptors reported in the literature, and introduces the relationship between these three nuclear receptor-mediated diseases and tamoxifen analogs to guide the research of novel tamoxifen analogs.

View Article and Find Full Text PDF

Tamoxifen and toremifene are two selective estrogen receptor modulators (SERMs) commonly used to treat breast cancer in women. Toremifene is well-known as a triphenylethylene derivative. Carboxy toremifene is a common metabolite of toremifene and tamoxifen.

View Article and Find Full Text PDF

Background: Breast cancer is considered to be 2most common cancer subtype investigated worldwide. It is mainly prevalent in postmenopausal women. Estrogen Receptor (ER) is a primary transcription factor for the survival and growth of tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!