We developed a new method for isolating in situ baroreceptor regions of the rabbit aortic depressor nerve (ADN) and estimated the transfer function from pressure to afferent nerve activity in the frequency range of 0.01-5 Hz by a white noise technique. Complete isolation of the baroreceptor area of the right ADN was made in situ by ligation of the innominate artery and the right subclavian and common carotid arteries. We altered the pressure in the isolated baroreceptor area according to a binary quasi-white noise between 80 and 100 mmHg in 12 urethan-anesthetized rabbits. The gain increased two to three times as the frequency of pressure perturbation increased from 0.01 to 2 Hz and then decreased at higher frequencies. The phase slightly led below 0.2 Hz. The squared coherence value was > 0.8 in the frequency range of 0.01-4 Hz. The step responses estimated from the transfer function were indistinguishable from those actually observed. We conclude that the baroreceptor transduction of the ADN is governed by linear dynamics under the physiological operating pressure range.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.1998.274.1.H358DOI Listing

Publication Analysis

Top Keywords

rabbit aortic
8
aortic depressor
8
depressor nerve
8
estimated transfer
8
transfer function
8
frequency range
8
baroreceptor area
8
dynamic transduction
4
transduction properties
4
properties situ
4

Similar Publications

Marfan syndrome: insights from animal models.

Front Genet

January 2025

Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Marfan syndrome (MFS) is an inherited disorder that affects the connective tissues and mainly presents in the bones, eyes, and cardiovascular system, etc. Aortic pathology is the leading cause of death in patients with Marfan syndrome. The fibrillin-1 gene () is a major gene involved in the pathogenesis of MFS.

View Article and Find Full Text PDF

Cinnamic acid lowers blood pressure and reverses vascular endothelial dysfunction in rats.

J Food Drug Anal

December 2024

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad-22060, KP, Pakistan.

Cinnamic acid (CA) possesses important cardiovascular effects such as cardioprotective, antiatherogenic, antihyperlipidemic and antioxidant, which predicts its potential role in the treatment of hypertension. The study was executed to investigate the antihypertensive potential of CA in Sprague Dawley (SD) rats followed by evaluation in diverse vascular preparations. Invasive blood pressure monitoring technique was used in normotensive and hypertensive rats, under anesthesia.

View Article and Find Full Text PDF

Cardiovascular problems in rabbits in reference to hypothyroidism - a four-year retrospective study.

Pol J Vet Sci

December 2024

Department of Epizootiology and the Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland.

The effects of T4 are mainly manifested by positive ino- and chronotropism. The syndrome accompanying hypothyroidism in rabbits (impaired myocardial contractility and reduced ejection capacity) is caused by a deficiency of thyroid hormones - especially T4. The study group consisted of a total of 41 animals: 15 males and 26 females, ranging in age from 2 months to 8 years, with echocardiogram showing reduced fractional shortening (<30%), with normal results of heamatological and biochemical tests.

View Article and Find Full Text PDF

Sodium valproate reverses aortic hypercontractility in acute myocardial infarction in rabbits.

Eur J Pharmacol

February 2025

Department of Physiology, School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain; Center for Biomedical Research Network on Cardiovascular Diseases (CIBER-CV), Madrid, Spain. Electronic address:

Sympathetic nervous system (SNS), endothelin 1 (ET-1) and angiotensin II (Ang II) are involved in the pathophysiology of acute myocardial infarction (AMI). Valproic acid (VPA) is under study for the treatment against AMI due to its beneficial cardiac effects. However, the vascular effects of VPA on the activation of the SNS, ET-1 and Ang II after AMI are not fully studied.

View Article and Find Full Text PDF

Background: Cardiac contractility modulation (CCM) is non-excitatory electrical stimulation for improving cardiac function. This study aimed to evaluate the effects of CCM on autophagy and apoptosis of cardiac myocytes in a rabbit model of chronic heart failure (CHF) and explore its possible mechanism.

Methods: Thirty rabbits were randomised into the Sham, heart failure (HF) and CCM groups, and animals in all three groups were sacrificed after 16 weeks of ascending aortic constriction or sham surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!