In recent years, both molecular biological and immunohistochemical techniques, utilizing receptor subtype-specific probes and antibodies to cloned central nervous system dopamine receptors, have revealed their presence in a number of peripheral organs and tissues. Molecular techniques have been hindered by the low abundance of receptor mRNA in these sites, and reverse transcription-polymerase chain reaction (RT-PCR) has been utilized to address this problem. However, RT-PCR is most often employed on either isolated mRNA or microdissected tissue samples, thereby limiting interpretation of whole tissue distribution. The present paper describes the use of a novel self-sustained sequence replication system (3SR) to amplify a target mRNA sequence in situ within the tissue or cell of interest that is then detected with the use of an internal labeled probe, using standard nonisotopic in situ hybridization. Specifically, D1A receptor mRNA was amplified and detected in kidney sections of Wistar-Kyoto rats (WKY). The amplified D1A receptor mRNA was localized to renal arterioles, juxtaglomerular apparatus, and both proximal and distal tubules. mRNA was colocalized to regions shown also to contain D1A receptor protein. D1A receptor mRNA was predominantly localized in the cortex. Specificity of D1A receptor mRNA detection was confirmed by appropriate localization in rat brain sections known to express D1A receptor mRNA. In addition, we confirmed the presence of renal D1A receptor mRNA by RT-PCR. We conclude that D1A receptor mRNA is expressed in a site-specific manner in the WKY kidney. The use of 3SR in situ permits elucidation of site specific mRNA localization in a manner not reported previously.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.1998.274.1.F232DOI Listing

Publication Analysis

Top Keywords

receptor mrna
32
d1a receptor
32
mrna
13
receptor
11
d1a
9
mrna localized
8
detection dopamine
4
dopamine receptor
4
receptor d1a
4
d1a subtype-specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!