Partial depletion of sarcoplasmic reticulum calcium does not prevent calcium sparks in rat ventricular myocytes.

J Physiol

Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.

Published: December 1997

1. The exact nature of calcium sparks in the heart remains highly controversial. We sought to determine whether calcium sparks arise from a single or multiple calcium release channels/ ryanodine receptors in the sarcoplasmic reticulum (SR). If their genesis involves a calcium-coupled recruitment of multiple channels, calcium sparks might be abolished by a modest depletion of SR calcium (because of the decrease in unitary calcium flux and hence a decrease in the gain of local calcium-induced calcium release). If, on the other extreme, calcium sparks are produced despite severe SR depletion, the single-channel origin will be preferred. 2. Spontaneous calcium sparks were studied in rat ventricular myocytes using confocal microscopy and the fluorescent calcium probe fluo-3. A computer algorithm was developed to count and measure objectively calcium sparks in linescan images. 3. Thapsigargin (25-150 nM) depleted caffeine-releasable SR calcium by up to 64%, in a dose- and time-dependent manner, without altering the resting cytosolic calcium level. During SR depletion, calcium sparks were robustly observed, albeit at reduced frequency (> or = 30% of control) and amplitude (> or = 60% of control). 4. Due to the reduced detectability of small sparks against noise background, the observed data would overestimate reduction in spark frequency but underestimate amplitude reduction. After correction for this detection bias, we found that the spark frequency was independent of SR load, whereas the amplitude was proportional to load. 5. We conclude that, although spark amplitude depends on SR filling status, the frequency of spark generation is independent of SR calcium load, and therefore independent of the local calcium release rate. This implies that sparks are single-channel events, or collective events that are well above threshold for local regeneration. Additionally, our results suggest that intraluminal SR calcium, at normal or low loads, does not play a major role in the regulation of on-gating of the ryanodine receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1160044PMC
http://dx.doi.org/10.1111/j.1469-7793.1997.665ba.xDOI Listing

Publication Analysis

Top Keywords

calcium sparks
32
calcium
19
calcium release
12
sparks
10
sarcoplasmic reticulum
8
rat ventricular
8
ventricular myocytes
8
depletion calcium
8
spark frequency
8
partial depletion
4

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!