Evidence is accumulating that glutamate-mediated excitotoxicity plays an important role in neuronal degeneration in Parkinson's disease (PD). In addition, alterations in excitatory amino acid neurotransmission in the basal ganglia contribute to the clinical manifestations of motor dysfunction. However, detailed knowledge of the anatomical distribution and subtype specificity of glutamate receptors in the dopamine neurons of human substantia nigra (SN) has been lacking. In order to test the hypothesis that selective expression of particular N-methyl-D-aspartate receptor (NR) subunit mRNA contributes to the differential vulnerability of specific neuronal populations to excitotoxic injury in PD, we have used a quantitative dual label, in situ hybridization technique with ribonucleotide probes to examine the cellular distribution of NR subunit mRNA in postmortem human mesencephalic dopaminergic neurons from subjects with no known neurological disorder. Analysis of both film autoradiograms and emulsion-dipped sections demonstrated significant labeling of nigral neurons for each NR subunit. Neuronal labeling was most intense for the NR1 and NR2D subunits, with low level labeling for the remaining subunits. In addition, we examined four subregions of the ventral mesencephalon for differential expression of NR subunit mRNA. For all NR subunits, the pars lateralis (PL) exhibited the most intense signal, while neurons of the ventral tier substantia nigra pars compacta (SNpc) failed to demonstrate a preponderance of a particular subunit. These results demonstrate that NRs are expressed to a significant degree in dopaminergic neurons of the SN and that their distribution does not correlate with the characteristic pattern of neuronal degeneration in PD.

Download full-text PDF

Source

Publication Analysis

Top Keywords

subunit mrna
16
dopaminergic neurons
12
expression n-methyl-d-aspartate
8
n-methyl-d-aspartate receptor
8
receptor subunit
8
mesencephalic dopaminergic
8
neuronal degeneration
8
substantia nigra
8
subunit
6
neurons
6

Similar Publications

Background: Germline haplodeficiency (RHD) is associated with thrombocytopenia, platelet dysfunction and predisposition to myeloid malignancies. Platelet expression profiling of a RHD patient showed decreased encoding for the A subunit of factor XIII, a transglutaminase that cross-links fibrin and induces clot stabilization. FXIII-A is synthesized by hematopoietic cells, megakaryocytes and monocytes.

View Article and Find Full Text PDF

variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path.

View Article and Find Full Text PDF

Canine high-grade oligodendrogliomas (HGOGs) exhibit a high expression of platelet-derived growth factor receptor-α (PDGFRA). We examined mutations and gain of and their association with the PDGFRA expression and proliferation of tumor cells in canine HGOG cases and cell lines. Polymerase chain reaction and sequence analysis revealed expected pathogenic mutations in exons 7 and 8 in 16/34 (47%) cases.

View Article and Find Full Text PDF

Structures of Saccharolobus solfataricus initiation complexes with leaderless mRNAs highlight archaeal features and eukaryotic proximity.

Nat Commun

January 2025

Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.

The archaeal ribosome is of the eukaryotic type. TACK and Asgard superphyla, the closest relatives of eukaryotes, have ribosomes containing eukaryotic ribosomal proteins not found in other archaea, eS25, eS26 and eS30. Here, we investigate the case of Saccharolobus solfataricus, a TACK crenarchaeon, using mainly leaderless mRNAs.

View Article and Find Full Text PDF

Nowadays, the use of monoclonal antibodies to target angiogenic signalling pathways is common, but, unfortunately, the clinical activity of these agents is limited. Thus, the development of approaches targeting multiple pathways for anti-angiogenic effect will lead to increase the clinical benefit. For this purpose, oleuropein, hesperidin, piperine, proanthocyanidins and retinoic acid, which have previously been proven to be bioactive components, anti-angiogenic performances were experimentally tested in retinal pigment epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!