N-methyl-D-aspartate receptors (NRs) play an important role in basal ganglia function. By using in situ hybridization with ribonucleotide probes, we investigated the regional and cellular distribution of NR subunit mRNA expression in the human basal ganglia: caudate nucleus, putamen, lateral globus pallidus (LGP), and medial globus pallidus (MGP). Analysis of both film autoradiograms and emulsion-dipped slides revealed distinct distribution patterns for each subunit. On film autoradiograms, the signal for NR1, NR2B, and NR2C in the striatum (STR) was higher than in globus pallidus (GP). The NR2D probe gave a stronger signal in GP than in STR. For NR2A we found a signal in all regions. Analysis of emulsion-dipped sections demonstrated that in striatal neurons, the NR2B signal was higher than in GP neurons. In GP neurons, NR2D was more abundant than in striatal neurons. Despite the relatively low signal on film for NR2C in GP, we found a slightly higher signal in GP per neuron than in STR since in the pallidal areas neurons were sparse but intensely labeled. NR1 and NR2A were more evenly distributed over neurons of STR and GP Between the different parts of STR and GP, we observed only minor differences in the expression of NRs. In MGP a subpopulation of neurons exhibiting low NR2D signals could be separated from the majority of neurons showing an intense NR2D signal. Since the physiological properties of NRs are dependent on subunit composition, these data suggest a high degree of regional specialization of NR properties in the human basal ganglia.

Download full-text PDF

Source

Publication Analysis

Top Keywords

globus pallidus
16
basal ganglia
12
human basal
8
film autoradiograms
8
neurons
8
striatal neurons
8
signal
7
str
5
expression n-methyl-d-aspartate
4
n-methyl-d-aspartate receptor
4

Similar Publications

Background And Objectives: Deep brain stimulation (DBS) is a well-established intervention for alleviating both motor and nonmotor symptoms of Parkinson disease. However, a common complication of stereotaxic DBS surgery is pneumocephalus, which can compromise electrode accuracy, complicate postoperative assessments, and negatively affect the long-term outcomes of DBS surgery. This report proposes a comprehensive and robust set of recommendations aimed at optimizing DBS surgical protocols to achieve zero pneumocephalus outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • This study aimed to analyze brain iron changes in patients with acute ischemic stroke (AIS) using quantitative susceptibility mapping (QSM) to assist with early diagnosis and treatment.
  • A total of 34 AIS patients and 30 healthy controls underwent QSM and conventional MRI, revealing significant increases in susceptibility values in specific brain regions (bilateral caudate nucleus and putamen) in AIS patients compared to controls.
  • The study found that the highest diagnostic accuracy for distinguishing AIS from healthy individuals was 72.2%, while factors like smoking showed a notable correlation with increased susceptibility values, although overall clinical scores didn't significantly correlate with iron changes.
View Article and Find Full Text PDF

Background: Deep brain stimulation (DBS) targeting globus pallidus internus (GPi) is a recognised therapy for drug-refractory dystonia. However, the mechanisms underlying this effect are not fully understood. This study explores how pallidal DBS alters spatiotemporal pattern formation of neuronal dynamics within the cerebellar cortex in a dystonic animal model, the dt hamster.

View Article and Find Full Text PDF

Introduction: Efficacy of deep brain stimulation (DBS) is established for several movement and psychiatric disorders. However, the mechanism of action and local tissue changes are incompletely described. We describe neurohistopathological findings of 9 patients who underwent DBS for parkinsonism and performed a systematic literature review on postmortem pathologic reports post-DBS.

View Article and Find Full Text PDF

A pyruvate dehydrogenase complex deficiency causes a reduction in adenosine triphosphate production and energy insufficiency, leading to neurological disorders. An abnormal E1-alpha protein originating from the gene with pathogenic variants is unable to communicate with E1-beta for the formation of the E1 enzyme, decreasing pyruvate dehydrogenase complex activity. In this study, we report a Vietnamese boy with lethargy, severe metabolic acidosis, increased serum lactate, hyperalaninemia, lactic acidosis, and globus pallidus lesions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!