Background: Retinoids, which are derivatives of vitamin A, induce differentiation of acute promyelocytic leukemia (APL) cells in vitro and in patients. However, APL cells develop resistance to retinoic acid treatment. Arsenic trioxide (As2O3) can induce clinical remission in patients with APL, including those who have relapsed after retinoic acid treatment, by inducing apoptosis (programmed cell death) of the leukemia cells. In this study, we investigated the molecular mechanisms by which As2O3 induces apoptosis in retinoic acid-sensitive NB4 APL cells, in retinoic acid-resistant derivatives of these cells, and in fresh leukemia cells from patients.

Methods: Apoptosis was assessed by means of DNA fragmentation analyses, TUNEL assays (i.e., deoxyuridine triphosphate labeling of DNA nicks with terminal deoxynucleotidyl transferase), and flow cytometry. Expression of the PML/RAR alpha fusion protein in leukemia cells was assessed by means of western blotting, ligand binding, and immunohistochemistry. Northern blotting and ribonuclease protection assays were used to evaluate changes in gene expression in response to retinoic acid and As2O3 treatment.

Results And Conclusions: As2O3 induces apoptosis without differentiation in retinoic acid-sensitive and retinoic acid-resistant APL cells at concentrations that are achievable in patients. As2O3 induces loss of the PML/RAR alpha fusion protein in NB4 cells, in retinoic-acid resistant cells derived from them, in fresh APL cells from patients, and in non-APL cells transfected to express this protein. As2O3 and retinoic acid induce different patterns of gene regulation, and they inhibit the phenotypes induced by each other. Understanding the molecular basis of these differences in the effects of As2O3 and retinoic acid may guide the clinical use of arsenic compounds and provide insights into the management of leukemias that do not respond to retinoic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/90.2.124DOI Listing

Publication Analysis

Top Keywords

retinoic acid
24
apl cells
20
leukemia cells
16
cells
13
pml/rar alpha
12
as2o3 induces
12
retinoic
10
arsenic trioxide
8
loss pml/rar
8
acute promyelocytic
8

Similar Publications

Embryonic development is a complex self-organizing process orchestrated by a series of regulatory events at the molecular and cellular levels, resulting in the formation of a fully functional organism. This review focuses on activin protein as a mesoderm-inducing factor and the self-organizing properties it confers. Activin has been detected in both unfertilized eggs and embryos, suggesting its involvement in early developmental processes.

View Article and Find Full Text PDF

Integrated metabolomics and mass spectrometry imaging analysis reveal the efficacy and mechanism of Huangkui capsule on type 2 diabetic nephropathy.

Phytomedicine

January 2025

State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Department of Nephrology, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. Electronic address:

Background: Huangkui capsule (HKC), a Chinese patent medicine, is clinically used for treating diabetic nephropathy. However, the core disease-specific biomarkers and targets of type 2 diabetic nephropathy (T2DN) and the therapeutic mechanism of HKC are not fully elucidated.

Purpose: This study aimed to investigate the therapeutic effects and underlying molecular mechanisms of HKC for T2DN.

View Article and Find Full Text PDF

This study aims to build an optimal drug delivery system by manufacturing and evaluating a hydrogel contact lens using Tretinoin (ATRA) and protein nanoparticles to improve the drug delivery system as an ophthalmic medical contact lens. To evaluate the optical and physical properties of the manufactured lens, the spectral transmittance, refractive index, water content, contact angle, AFM, tensile strength, drug delivery, and antibacterial properties were analyzed. The contact lens was manufactured to contain ATRA and bovine serum albumin (BSA) in different ways, and the results confirmed that A, B, and C each had different physical properties.

View Article and Find Full Text PDF

Background/objectives: This study investigates the metabolic profile of a single dose of etodolac in healthy volunteers, focusing on pharmacokinetics, clinical parameters, and metabolomic variations to identify biomarkers and pathways linked to drug response, efficacy, and safety.

Methods: Thirty-seven healthy volunteers, enrolled after rigorous health assessments, received a single dose of etodolac (Flancox 500 mg). Pharmacokinetic profiles were determined using tandem mass spectrometry analysis, and the metabolomic profiling was conducted using baseline samples (pre-dose) and samples at maximum drug concentration (post-dose) via liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer.

View Article and Find Full Text PDF

belongs to the NOD-like receptor family and is recognized as a modulator of innate immune mechanisms. In this study, we firstly report that () acts as a negative regulator in the antiviral immune response. is ubiquitously expressed across tested tissues, displaying particularly high expression in the intestine, spleen, gill and kidney.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!