Activation of NMDA receptors in dissociated cerebellar granule cells reduced mitochondrial membrane potential (MMP), as measured by rhodamine 123 fluorescence in a flow cytometer. This effect was inhibited by several NMDA-receptor antagonists with the following rank order of potency: MK-801 > PCP > TCP > dextrorphan > dichlorokynurenic acid > D-AP5 > dextromethorphan. Neither spermine nor arcaine modified the NMDA-induced reduction in MMP, whereas ifenprodil and eliprodil inhibited this response in the micromolar range. The mechanism responsible for the alteration of MMP mediated by NMDA was studied. Mepacrine and dibucaine prevented the MMP reduction induced by NMDA, as did W13 (calmodulin antagonist). In contrast, this effect was not blocked by cyclooxygenase or lipooxygenase inhibitors, H7 (a protein kinase C inhibitor) or nitroarginine (nitric oxide synthase inhibitor). These data suggest a direct interaction between NMDA-receptor activation and arachidonic acid formation, and indicate that NMDA receptor-mediated effect on MMP could involve arachidonic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(97)00947-5DOI Listing

Publication Analysis

Top Keywords

arachidonic acid
12
mitochondrial membrane
8
membrane potential
8
nmda
5
mmp
5
modulation neuronal
4
neuronal mitochondrial
4
potential nmda
4
nmda receptor
4
receptor role
4

Similar Publications

Background: Modern dietary trends have led to an increase in foods that are relatively high in n-6 polyunsaturated fatty acids (PUFAs) and low in n-3 PUFAs. We previously reported that the offspring of mother mice that consumed a diet high in n-6 linoleic acid (LA) and low in n-3 α-linolenic acid (ALA), hereinafter called the LA/ALA diet, exhibit behavioral abnormalities related to anxiety and feeding.

Objective: We currently lack a comprehensive overview of the behavioral abnormalities in these offspring, which was investigated in this study.

View Article and Find Full Text PDF

Background: Cellular senescence is a hallmark of aging and has been implicated in several neurodegenerative diseases including Alzheimer's disease (AD). Senescence cells undergo changes in gene expression and metabolism and can exhibit a so-called "senescence-associated secretory phenotype" (SASP) characterized by increased secretion of pro-inflammatory molecules and factors which can damage nearby cells, contributing to AD pathology progression.

Method: In this study, we determined mechanisms of cellular senescence using human postmortem brain samples, cellular models, and APOE4 animal models.

View Article and Find Full Text PDF

Background: Synaptic loss predicts cognitive decline in Alzheimer's disease (AD). However, the critical disease modifying molecular mechanisms of synaptic failure remain elusive. Animal studies implicate the increased activation of cytosolic phospholipase (cPLA2) activation in synaptic loss and neuroinflammation.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.

Background: The role of oligomeric forms of various proteins as direct responsible of neuronal dysfunction in neurodegenerative disorders has been supported by numerous findings at experimental level and, more recently, by histological examinations in human material. The cellular prion protein (PrP) has been proposed to mediate the neurotoxicity of β-amyloid, α-synuclein and tau oligomers. We demonstrated that although amyloid-β oligomers (AβOs) bind with high affinity to PrP, the memory deficit induced by intracerebroventricular (ICV) administration of AβOs in mice was not mediated by PrP.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada.

Background: The endocannabinoid system has demonstrated roles in Alzheimer's Disease (AD), such as modulation of inflammation. Fatty Acid Amide Hydrolase (FAAH) is the enzyme responsible for the rapid inactivation of the endocannabinoid anandamide into arachidonic acid and ethanolamine. In doing so, FAAH modulates the concentration of anandamide and influences neurobehavioral functions and physiological conditions such as nociception and inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!