Thrombopoietin (TPO) acts as a lineage-specific late-acting factor to stimulate megakaryocyte and platelet formation. However, analysis of mice lacking either the cytokine or its receptor, c-Mpl, also revealed deficiencies in progenitor cells of multiple hematopoietic lineages, suggesting that TPO signaling may play an important role in the regulation of the hematopoietic stem cell compartment. To investigate this hypothesis, we determined preprogenitor and colony forming unit-spleen (CFU-S) numbers and analyzed the long-term hematopoietic repopulating capacity of bone marrow cells from mpl-/- mice. mpl-/- mice had 4- to 12-fold fewer preprogenitor cells than wild-type mice. In irradiated normal recipients, mpl-/- bone marrow generated 8- to 10-fold fewer spleen colonies than wild-type marrow at both 8 and 12 days after transplantation. This defect was intrinsic to the transplanted hematopoietic cells, as the microenvironment of mpl-/- recipients supported similar CFU-S growth to that observed in wild-type recipients. In definitive assays of stem cell function, bone marrow cells from mpl-/- mice failed to compete effectively with normal cells for long-term reconstitution of the hematopoietic organs of irradiated recipients, even when transplanted in 10-fold excess. Serial transplantation studies further suggested that stem cell self-renewal also may be compromised in mpl-/- mice. These data imply that TPO, signaling through c-Mpl, plays a vital physiological role in the regulation of hematopoietic stem cell production and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC18717PMC
http://dx.doi.org/10.1073/pnas.95.3.1195DOI Listing

Publication Analysis

Top Keywords

stem cell
20
mpl-/- mice
16
hematopoietic stem
12
bone marrow
12
mice lacking
8
tpo signaling
8
role regulation
8
regulation hematopoietic
8
marrow cells
8
cells mpl-/-
8

Similar Publications

Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.

View Article and Find Full Text PDF

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Therapeutic gene correction of HBB frameshift CD41-42 (-TCTT) deletion in human hematopoietic stem cells.

Adv Biotechnol (Singap)

January 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.

Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation.

View Article and Find Full Text PDF

Growth hormone-releasing hormone signaling and manifestations within the cardiovascular system.

Rev Endocr Metab Disord

January 2025

Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.

Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!