Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408399709527798 | DOI Listing |
Mol Cell Biochem
January 2025
Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Luigi Vanvitelli 32, 20133, Milan, Italy.
Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China.
The historical appreciation of tea dates back to ancient times, while technological limitations have long hindered in-depth exploration of its flavor complexity and functional attributes. This study investigated the effects of various teas on a traditional delicacy, "tea-flavored fish", using teas processed via traditional methods. Analysis of functional components revealed that processing and fermentation reduced catechin levels (186.
View Article and Find Full Text PDFACS Omega
January 2025
Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 2788510, Japan.
This study aimed to prepare films using Xyloglucan (Xylo) and tea extract (TE) to treat aphthous stomatitis without causing discomfort. Xylo, which gelates by adding polyphenol, was used as a gelation agent, and TE, which contains epigallocatechin-3-gallate (EGCG) with antioxidant properties, was used as an active pharmaceutical agent. Two kinds of films, hydrogel and xerogel films, were prepared by mixing various amounts of Xylo and TE.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China. Electronic address:
This study focuses on the development and application of tea polyphenol-loaded chitosan/polyaspartic acid nanoparticles (TP@CS/PASP-Nps) embedded within polyvinyl alcohol (PVA) nanofibers to extend the shelf life of fruit. The nanofibers were fabricated using electrospinning, which enhanced the stability and uniform dispersion of the nanoparticles. Experimental results demonstrated that the TP@CS/PASP nanoparticles exhibit significant pH and protease-responsive release of TP, with a cumulative release of 56.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China. Electronic address:
Dermal papilla cells (DPCs) are crucial for the growth and development of hair follicles (HF). (-)-Epigallocatechin-3-gallate (EGCG) is the primary catechin identified in green tea, which has antioxidant effects and regulates cell activity. This study demonstrates that EGCG could promote the proliferation of DPCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!