PAR-2 is a second member of a novel family of G-protein-coupled receptors characterized by a proteolytic cleavage of the amino terminus, thus exposing a tethered peptide ligand that autoactivates the receptor. The physiological and/or pathological role(s) of PAR-2 are still unknown. This study provides tissue-specific cellular localization of PAR-2 in normal human tissues by immunohistochemical techniques. A polyclonal antibody, PAR-2C, was raised against a peptide corresponding to the amino terminal sequence SLIGKVDGTSHVTGKGV of human PAR-2. Significant PAR-2 immunoreactivity was detected in smooth muscle of vascular and nonvascular origin and stromal cells from a variety of tissues. PAR-2 was also present in endothelial and epithelial cells independent of tissue type. Strong immunolabeling was observed throughout the gastrointestinal tract, indicating a possible function for PAR-2 in this system. In the CNS, PAR-2 was localized to many astrocytes and neurons, suggesting involvement of PAR-2 in neuronal function. A role for PAR-2 in the skin was further supported by its immunolocalization in the epidermis. PAR-2C antibody exemplifies an important tool to address the physiological role(s) of PAR-2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/002215549804600204 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Biotechnology, Bharathiar University, Coimbatore, India. Electronic address:
Tissue factor (TF) and protease-activated receptor 2 (PAR2) have been associated with the progression of cancer, while integrins are essential for the adhesion and migration of cancer cells. This study aimed to explore the cross-talk between the TF:FVIIa complex, PAR2 signaling, and the expression of integrin α1 in cervical cancer cells. Utilizing data from The Cancer Genome Atlas (TCGA), the research examined the relationship between the TF and PAR2 genes and the integrin α1 gene (ITGA1) in reproductive cancers, revealing a positive correlation between integrin α1 expression and both TF and PAR2 genes.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Nephropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
Aims: Activation of Protease Activated Receptor 2 (PAR2) has been shown to be involved in regulation of injury-related processes including inflammation, fibrosis and hypertrophy. In this study we will investigate the role of PAR2 in cardiac injury in a mouse model of hypertension using continuous infusion with angiotensin II.
Methods: Hypertension was induced in 12 weeks old wildtype (wt, n = 8) and PAR2 deficient mice (n = 9) by continuous infusion with angiotensin II for 4 weeks using osmotic minipumps.
Chin Med
November 2024
The State Key Laboratory of Functions and Applications of Medicinal Plants, The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, 561113, Guizhou, China.
Background: Diabetic cardiomyopathy (DCM), characterized by myocardial fibrosis, is a major cause of mortality and morbidity in diabetic patients; the inhibition of cardiac fibrosis is a fundamental strategy for treating DCM. Gastrodin (GAS), a compound extracted from Gastrodia elata protects against DCM, but the molecular mechanism underlying its antifibrotic effect has not been elucidated.
Methods: In vivo, the effects of GAS were investigated using C57BL/6 mice with DCM, which was induced by administering a high-sugar, high-fat (HSF) diet and streptozotocin (STZ).
Sci Rep
November 2024
Department of Chest Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road., Beitou District, 11217, Taipei City, Taiwan, ROC.
House dust mites (HDM) are common aeroallergens linked to airway inflammation and remodeling in asthma. Protease-activated receptor 2 (PAR2) and thymic stromal lymphopoietin (TSLP) may mediate these immune responses. However, how the epithelium influences fibroblasts toward airway remodeling remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
Sepsis is a complex disorder caused by a dysregulated host response to infection, with high levels of morbidity and mortality. Treatment aimed to modulate immune response and maintain vascular function is still one of the major clinical challenges. This study was designed to test the effect of the small molecule 1-Piperidine Propionic Acid (1-PPA) as molecular targeted agent to block protease-activated receptor 2 (PAR2), one of the major modulators of inflammatory response in LPS-induced experimental endotoxemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!