Laser frequency-modulated (FM) spectroscopy has been used as an axial probe of a laser-guided electric discharge in sodium-argon vapor contained in an optically accessible metal heat pipe oven. Absorption measurements in the region 23 106-23 881 cm-1 provided accurate line positions (±<0.006 cm-1) for 141 transitions in the v' = 3-8 <-- v" = 0 and v' = 5-9 <-- v" = 1 bands of NaH (A1Sigma+-X1Sigma+). In addition, 18 transitions of Na (3p to 9-13d and 11-14s) and 10 of argon (5p-4s) were measured. Analysis of the spectrum indicates that perhaps all absorption signals are due to neutrals NaH, Na, and Ar and are observed via "population" modulation. Copyright 1997 Academic Press. Copyright 1997Academic Press

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmsp.1997.7441DOI Listing

Publication Analysis

Top Keywords

laser frequency-modulated
8
frequency-modulated spectroscopy
8
spectroscopy laser-guided
4
laser-guided plasma
4
plasma sodium
4
sodium vapor
4
vapor positions
4
positions nah
4
nah a1sigma+-x1sigma+
4
a1sigma+-x1sigma+ 9-13d
4

Similar Publications

In this Letter, we propose and experimentally validate a high-fidelity and adaptive forward-phase-based vibration sensing using a Wiener filter (WF). In commercial coherent digital subcarrier multiplexing (DSCM) systems under external cavity lasers (ECLs), frequency-domain pilot tones (FPTs) in subcarrier intervals are employed for dynamic frequency offset estimation (FOE), carrier phase estimation (CPE), and polarization demultiplexing. The phase estimated by the CPE module is processed with the WF to achieve high-fidelity extraction of the vibration-induced phase.

View Article and Find Full Text PDF

We demonstrate a (FMCW) light detection and ranging (LIDAR) system utilizing a (SNSPD) to measure vibrational spectra using reflected signals at the single-photon level. By determining the time-variant Doppler shift of the reflected probe signal, this system successfully reconstructs various audio signals, including pure sinusoidal, multi-tonal, and musical signals, up to 200 Hz, limited by the laser frequency modulation rate and the Nyquist sampling theorem. Additionally, we employ scanning galvo mirrors to perform 3D measurements and map audio signals from different regions in the scanned field of view.

View Article and Find Full Text PDF

A Submicrosecond-Response Ultrafast Microwave Ranging Method Based on Optically Generated Frequency-Modulated Pulses.

Sensors (Basel)

December 2024

National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 622150, China.

An ultrafast microwave ranging method based on optically generated frequency-modulated microwave pulses is proposed in this study. The theoretical analysis demonstrated that nanosecond-scale linear frequency modulation microwave pulse can be obtained by femtosecond laser interference under the condition of unbalanced dispersion, which can be used to achieve a high temporal resolution of the displacement change in the measurement by the principle of frequency modulation continuous wave (FMCW) radar. The proof-of-principle experiment successfully measured the displacement change with an error of 2.

View Article and Find Full Text PDF

Frequency-modulated continuous-wave (FMCW) narrow linewidth lasers have served as the cornerstone behind applications such as autonomous driving, wearable technology, virtual reality, and remote sensing mapping. Strongly coherent lasers are typically used for these studies, with a clear demand for linear fast response and wide frequency tuning range. In this paper, profiting from the ultrahigh-quality factor of the crystalline whispering-gallery-mode resonator, by using a self-injection locking mechanism to suppress spontaneous emission noise and improve coherence, sub-kHz linewidth at 450 nm is obtained.

View Article and Find Full Text PDF

Spectral scanning, which utilizes the dispersive effect of light, is a simple and robust method for solid-state beam steering in light detection and ranging (LiDAR) applications. Powered by a tunable laser source, optical frequency-domain reflectometry (OFDR) is a high-precision measurement scheme that is inherently compatible with spectral scanning. Here, we propose a spectral-scanning LiDAR based on OFDR technology and demonstrate that, by connecting the measured spectral reflectivity and group delay of the targets with the dispersion equation, their cloud point data can be obtained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!