Histopathological effects of the artemisinin antimalarial, beta-arteether, were evaluated in rats. Arteether (3.125-12.5 mg/kg/day, IM, in sesame oil) was administered for 7 consecutive days. Seven days following the last injection, histological evaluation of the brainstem was performed. Rats treated with 12.5 mg/kg showed significant neuropathology, including chromatolysis, in the nucleus trapezoideus and nucleus superior olive. To a lesser extent, neuropathology was present in the nucleus ruber. Mild neuropathology was also detected in other brainstem regions examined. Although no statistically significant neuropathology was found for the groups treated with 6.25 mg/kg/day and 3.125 mg/kg/day, substantial neuropathology was observed in a single rat in each of these treatment conditions. These results confirm and extend previous studies demonstrating brainstem neurotoxicity from artemisinin antimalarials. Furthermore, these results suggest that, in rats, brainstem auditory pathways may be particularly vulnerable. Early detection of arteether neuropathology may, therefore, require examination of auditory functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0361-9230(97)00339-0 | DOI Listing |
Nat Cancer
January 2025
Dept. of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.
The diagnostic landscape of brain tumors integrates comprehensive molecular markers alongside traditional histopathological evaluation. DNA methylation and next-generation sequencing (NGS) have become a cornerstone in central nervous system (CNS) tumor classification. A limiting requirement for NGS and methylation profiling is sufficient DNA quality and quantity, which restrict its feasibility.
View Article and Find Full Text PDFNeurosurgery
January 2025
Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Paris, France.
Background And Objectives: The risk-to-benefit ratio of transopercular awake resection for recurrent insular diffuse gliomas is poorly studied. We assessed feasibility, safety, and efficacy of awake surgical resection of recurrent insular diffuse gliomas in patients with previous treatments (resection and/or radiotherapy and/or chemotherapy and/or combination).
Methods: Observational, retrospective, single-institution cohort analysis (2010-2023) of 123 consecutive adult patients operated on for an insular diffuse glioma (2021 World Health Organization classification) under awake conditions.
Autophagy
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
Glia contribute to the neuropathology of Parkinson disease (PD), but how they react opposingly to be beneficial or detrimental under pathological conditions, like promoting or eliminating SNCA/α-syn (synuclein alpha) inclusions, remains elusive. Here we present evidence that aux (auxilin), the homolog of the PD risk factor GAK (cyclin G associated kinase), regulates the lysosomal degradation of SNCA/α-syn in glia. Lack of glial GAK/aux increases the lysosome number and size, regulates lysosomal acidification and hydrolase activity, and ultimately blocks the degradation of substrates including SNCA/α-syn.
View Article and Find Full Text PDFDiagn Cytopathol
January 2025
Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA.
Solitary plasmacytomas are localized single tumors of monoclonal plasma cells that occur in two variants: solitary plasmacytoma of bone and extraosseous plasmacytoma. Solitary plasmacytoma of bone accounts for only 1%-2% of plasma cell lesions, and extraosseous plasmacytoma is also approximately 1%. These are both very uncommon at the skull base.
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
March 2025
Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
Magnetic resonance imaging (MRI) is a powerful tool to identify the structural and functional correlates of neurological illness but provides limited insight into molecular neurobiology. Using rat genetic models of autism spectrum disorder, we show that image texture-processed neurite orientation dispersion and density imaging (NODDI) diffusion MRI possesses an intrinsic relationship with gene expression that corresponds to the biophysically modeled cellular compartments of the NODDI diffusion signal. Specifically, we demonstrate that neurite density index and orientation dispersion index signals are correlated with intracellular and extracellular gene expression, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!