X-ray diffraction is used to study the binding of xenon and krypton to a variety of crystallised proteins: porcine pancreatic elastase; subtilisin Carlsberg from Bacillus licheniformis; cutinase from Fusarium solani; collagenase from Hypoderma lineatum; hen egg lysozyme, the lipoamide dehydrogenase domain from the outer membrane protein P64k from Neisseria meningitidis; urate-oxidase from Aspergillus flavus, mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis and the ligand-binding domain of the human nuclear retinoid-X receptor RXR-alpha. Under gas pressures ranging from 8 to 20 bar, xenon is able to bind to discrete sites in hydrophobic cavities, ligand and substrate binding pockets, and into the pore of channel-like structures. These xenon complexes can be used to map hydrophobic sites in proteins, or as heavy-atom derivatives in the isomorphous replacement method of structure determination.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hydrophobic sites
8
sites proteins
8
xenon krypton
8
exploring hydrophobic
4
xenon
4
proteins xenon
4
krypton x-ray
4
x-ray diffraction
4
diffraction study
4
study binding
4

Similar Publications

Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation.

View Article and Find Full Text PDF

Mining Druggable Sites in Influenza A Hemagglutinin: Binding of the Pinanamine-Based Inhibitor M090.

ACS Med Chem Lett

January 2025

Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació - Campus Torribera, Universitat de Barcelona, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain.

Assessing the binding mode of drug-like compounds is key in structure-based drug design. However, this may be challenged by factors such as the structural flexibility of the target protein. In this case, state-of-the-art computational methods can be valuable to explore the linkages between structural and pharmacological data.

View Article and Find Full Text PDF

Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.

View Article and Find Full Text PDF

Nucleophilic Reactions of Phosphorothioate Oligonucleotides.

Small Methods

January 2025

College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.

The nucleophilic reaction between phosphorothioate oligonucleotides and electrophilic reagents has become a cost-effective and efficient approach for oligonucleotide functionalization. This method allows for the precise incorporation of desired chemical structures at specific sites on the phosphorothioate backbone through conjugation with electrophilic groups. The reaction is characterized by its high reactivity and yield, as well as its ability to enhance the hydrophilicity of otherwise hydrophobic compounds.

View Article and Find Full Text PDF

Transformation fate of bisphenol A in aerobic denitrifying cultures and its coercive mechanism on the nitrogen transformation pathway.

Environ Res

January 2025

State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong Kowloon, 999077, China. Electronic address:

Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!