Synaptic plasticity mechanisms for associative learning require near-simultaneous pairs of inputs to target cells. Sensory cues encountered behaviorally, however, are typically staggered in time, implying the need for active short-term memory traces of antecedent cues. The dense recurrent connectivity within regions of hippocampal field CA3 is suggestive of the kind of re-entrant network that could subserve this kind of "holding" memory. Consequently, we have investigated whether an abstract model of this region incorporating its major anatomical and physiological features could function as a reverberatory memory network. The continuous-time model describes the behavior of highly connected groups of CA3 pyramidal cells, or "patches," in response to brief, rhythmic, sensory stimulation. Time constants for excitatory and inhibitory postsynaptic potentials and axonal transmission delays for local and distal connections were estimated from empirical data. When the inhibitory units in these patches were connected to an oscillator intended to model the theta wave activity of the medial septum, the network entered reverberatory states and maintained second-long memory traces of the cortical input, after which it lost its coherent behavior. Noise analysis indicated that the network's operation was moderately resistant to random fluctuations proportional to patch activity. These results suggest that field CA3 could function as a holding memory that assists the integration of disjoint stimuli found in innumerable associative tasks, and that the duration of its coherent operation might determine the temporal limits in their performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1098-1063(1997)7:6<656::AID-HIPO7>3.0.CO;2-CDOI Listing

Publication Analysis

Top Keywords

field ca3
12
hippocampal field
8
memory traces
8
memory
6
short-term reverberant
4
reverberant memory
4
model
4
memory model
4
model hippocampal
4
ca3
4

Similar Publications

Background: Fabry disease (FD) patients are known to be at high risk of developing neuropsychiatric symptoms such as anxiety, depression and cognitive deficits. Despite this, they are underdiagnosed and inadequately treated. It is unknown whether these symptoms arise from pathological glycosphingolipid deposits or from cerebrovascular abnormalities affecting neuronal functions in the central nervous system.

View Article and Find Full Text PDF

: Baroni (HCB) is a traditional herb for the treatment of depression in China. However, the active constituents and the underlying mechanisms of its antidepressant effects remain unclear. The aim of this study was to identify the bioactive constituents of HCB and elucidate its underlying mechanism for the treatment of depression.

View Article and Find Full Text PDF
Article Synopsis
  • Pyrethroid pesticides, particularly deltamethrin (DM), may contribute to neurodevelopmental disorders like ADHD and autism, but the exact mechanisms are still not fully understood.
  • The study utilized a rodent model to analyze brain-derived extracellular vesicles (BDEVs) from mice exposed to DM and identified 89 differentially expressed proteins linked to mitochondrial function and synaptic plasticity.
  • Ultimately, the research found that BDEVs from DM-exposed mice impaired long-term potentiation (LTP) in hippocampal synapses, suggesting that changes in BDEV signaling play a critical role in the neurotoxic effects of DM.
View Article and Find Full Text PDF

Background And Purpose: Depression is a growing public health concern worldwide, characterized by cognitive impairment and structural abnormalities of the hippocampus. Current antidepressant treatment sometimes causes the late onset of results and the much faster occurrence of side effects. For this reason, the interest in new treatment strategies including exercise and natural products such as curcumin has increased to treat depression.

View Article and Find Full Text PDF

Fluctuations in kynurenic acid (KYNA) and brain-derived neurotrophic factor (BDNF) levels in the brain reflect its neurological status. The aim of the study was to investigate the effect of transiently elevated KYNA concentrations in the cerebroventricular circulation on the expression of BDNF and its high-affinity tropomyosin-related kinase receptor B (TrkB) in specific structures of the sheep brain. Intracerebroventricularly cannulated anestrous sheep were subjected to a series of four 30 min infusions of KYNA: 4 × 5 μg/60 μL/30 min (KYNA20, = 6) and 4 × 25 μg/60 μL/30 min (KYNA100, = 6) or a control infusion ( = 6), at 30 min intervals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!