At 9 mM glucose, experimental results show that mitochondrial phosphate depletion (induced by glucose phosphorylation, catalyzed by mitochondrial hexokinase) reduces the activities of the respiratory chain, oxidative phosphorylation, and glutaminase. Consequently, the 14C-lactate oxidation to 14CO2 is lowered in the presence of glucose. The fall of ATP level triggers a high aerobic glycolysis by deinhibiting fructose-6-P kinase. NADH, generated by enhanced glyceraldehyde-3-P dehydrogenase activity, increases the reducing power. Moreover, the lactate dehydrogenase (LDH) system is shifted toward lactate formation, while NAD+ is regenerated and the oligomycin-inhibited ATP production is replaced by the iodoacetate-inhibited ATP production. From 14CO2 production and lactate accumulation it is calculated that about 60% of 14C-glucose which disappears is channelled into extraglycolytic reactions. On the contrary, 82% of glucose below l mM is metabolized through non-glycolytic reactions. The pyruvate kinase-M2 (PK-M2) inhibition does not limit the glycolytic flow from 9 mM glucose, but it may cause sustained gluconeogenesis.
Download full-text PDF |
Source |
---|
Cell Metab
January 2025
Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Electronic address:
Cellular therapies are living drugs whose efficacy depends on persistence and survival. Expansion of therapeutic T cells employs hypermetabolic culture conditions to promote T cell expansion. We show that typical in vitro expansion conditions generate metabolically and functionally impaired T cells more reliant on aerobic glycolysis than those expanding in vivo.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.
The Warburg effect, a common feature of solid tumors, rewires the metabolism and promotes growth, survival, proliferation, and long-term maintenance in gastric cancer (GC). We performed in vitro and in vivo studies of the pathogenesis of GC to investigate the effects and mechanism of LINC01224 in this cancer. qRT-PCR was used to measure the expression of LINC01224 or miR-486-5p in GC cells, and the expression of LINC01224 in GC tissues by FISH (Fluorescence in situ hybridization) analysis was evaluated.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
Introduction: Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors in oral and maxillofacial region. The development of new chemotherapy agents and new drug combinations may improve patient survival and quality of life, but both surgery and radiotherapy have significant functional side effects and drug resistance, ultimately resulting in a 5-year survival rate of no more than 60% for OSCC patients. Studies have shown that Brucea javanica oil (BJO) extracts have anti-cancer effects against a variety of cancers, but little research has been reported on OSCC.
View Article and Find Full Text PDFCancer Metab
January 2025
Department of Cardiovascular medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
The Warburg effect, characterized by the shift toward aerobic glycolysis, is closely associated with the onset and advancement of tumors, including multiple myeloma (MM). Nevertheless, the specific regulatory mechanisms of glycolysis in MM and its functional role remain unclear. In this study, we identified that growth differentiation factor 15 (GDF15) is a glycolytic regulator, and GDF15 is highly expressed in MM cells and patient samples.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, 201203, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!