The proposed method or re-embedding tissue specimens from paraffin in epoxy resins (epon, araldite, etc.) permits study of the same material at histo-, cyto-, and ultrastructural levels by modern morphological methods and thus detecting a number of additional morphological signs important for thanatogenesis. The proposed method provides objective results and improves the quality of forensic medical studies in general.

Download full-text PDF

Source

Publication Analysis

Top Keywords

method re-embedding
8
epoxy resins
8
proposed method
8
re-embedding tissues
4
tissues paraffin
4
paraffin blocks
4
blocks epoxy
4
resins study
4
study stained
4
stained semithin
4

Similar Publications

When multiple instance learning meets foundation models: Advancing histological whole slide image analysis.

Med Image Anal

January 2025

Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Southern Medical University, Guangzhou, China. Electronic address:

Deep multiple instance learning (MIL) pipelines are the mainstream weakly supervised learning methodologies for whole slide image (WSI) classification. However, it remains unclear how these widely used approaches compare to each other, given the recent proliferation of foundation models (FMs) for patch-level embedding and the diversity of slide-level aggregations. This paper implemented and systematically compared six FMs and six recent MIL methods by organizing different feature extractions and aggregations across seven clinically relevant end-to-end prediction tasks using WSIs from 4044 patients with four different cancer types.

View Article and Find Full Text PDF

Fuchs' endothelial corneal dystrophy (FECD) is a common sight-threatening condition characterised by pathological changes in the posterior cornea. Here we report observations by light, transmission and volume scanning electron microscopy on changes in the endothelium and matrix associated with the characteristic deformations of Descemet's membrane, termed guttae. Specimens were archived full-thickness human corneal tissue, removed during graft surgery, that had been fixed, stained and embedded by conventional processing methods for examination by transmission electron microscopy more than 40-years previously.

View Article and Find Full Text PDF

Introduction: In recent years, China's divorce rates have remained high, especially in metropolitan areas such as Beijing and Shanghai, where rates reach up to 40%. Additionally, there has been a notable shift towards younger demographics in divorce cases. In a society that highly values marital harmony, divorce is often seen as a cultural transgression.

View Article and Find Full Text PDF

Most of the existing bi-modal (RGB-D and RGB-T) salient object detection methods utilize the convolution operation and construct complex interweave fusion structures to achieve cross-modal information integration. The inherent local connectivity of the convolution operation constrains the performance of the convolution-based methods to a ceiling. In this work, we rethink these tasks from the perspective of global information alignment and transformation.

View Article and Find Full Text PDF

Purpose: To expand the routine of pathological diagnostics of surgical keratoplasty specimens via transmission electron microscopy. The target was to identify the best re-embedding method for optimal structural preservation of formalin fixed paraffin embedded (FFPE) corneal tissue re-embedded into resin for ultrastructural analysis.

Basic Procedures: Bovine FFPE corneal tissue was re-embedded into resin with either a rapid osmium-free four-hour-method or a four-day-routine-method known from nephropathology, compared with primary resin embedded bovine corneal tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!