Inhibition of conceptal biosynthesis of all-trans-retinoic acid (t-RA) by aldehydes generated from lipid peroxidation was investigated. Oxidative conversion of all-trans-retinal (t-RAL, 18 microM) to t-RA catalyzed by rat conceptal cytosol (RCC) was sensitive to inhibition by trans-2-nonenal (tNE), nonyl aldehyde (NA), 4-hydroxy-2-nonenal (4HNE), and hexanal. With an initial molar ratio of aldehyde/t-RAL of 2:1, tNE, NA, and 4HNE caused 70, 65, and 40% reductions of t-RA synthesis, respectively. Hexanal reduced generation of t-RA by approximately 50% as the ratio of aldehyde/t-RAL was raised to 20:1. tNE significantly increased the Km of the reaction and kinetic analyses indicated a mixed competitive/noncompetitive inhibition. By contrast, analogous reactions catalyzed by adult rat hepatic cytosol (ARHC) were highly resistant to inhibition by the same aldehydes. Significant inhibition (> 40% reduction of t-RA generation) by 4HNE, NA, and tNE were achieved at high molar ratios of aldehyde/t-RAL (> 175:1). Hexanal did not inhibit the reaction significantly even at very high ratios of aldehyde/t-RAL (> 2,000:1). Interestingly, when reduced glutathione (GSH, 10 mM) alone or GSH plus glutathione S-transferase (GST) were added to RCC-catalyzed reactions, additions of tNE or 4HNE showed either no significant inhibition or a partial lack of inhibition. Results suggested that GSH-dependent conjugation with 4HNE proceeded slowly compared to conjugation with tNE. To test the hypothesis that GST-catalyzed GSH conjugation can effectively prevent inhibition of t-RA synthesis by aldehydic products of lipid peroxidation, triethyltin bromide (TEB, a potent inhibitor of GST, 20 microM) was added to ARHC-catalyzed reactions when hexanal or tNE were present in the incubations. Eighty and 60% of hexanal and tNE inhibition, respectively, were observed. This was apparently due to TEB blockage of GST-catalyzed GSH conjugation reactions and thus strongly supported the stated hypothesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-5849(97)00272-4DOI Listing

Publication Analysis

Top Keywords

lipid peroxidation
12
inhibition
11
reduced glutathione
8
tne
8
ratio aldehyde/t-ral
8
tne 4hne
8
t-ra synthesis
8
ratios aldehyde/t-ral
8
gst-catalyzed gsh
8
gsh conjugation
8

Similar Publications

The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.

View Article and Find Full Text PDF

Axonal fusion represents an efficient way to recover function after nerve injury. However, how axonal fusion is induced and regulated remains largely unknown. We discover that ferroptosis signaling can promote axonal fusion and functional recovery in C.

View Article and Find Full Text PDF

Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy.

Mol Cell Biochem

January 2025

Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.

Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.

View Article and Find Full Text PDF

Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.

View Article and Find Full Text PDF

Unlabelled: As the principal lipid transporter in the human brain, apolipoprotein E (ApoE) is tasked with the transport and protection of highly vulnerable lipids required to support and remodel neuronal membranes, in a process that is dependent on ApoE receptors. Human allele variants that encode proteins differing only in the number of cysteine (Cys)-to-arginine (Arg) exchanges (ApoE2 [2 Cys], ApoE3 [1 Cys], ApoE4 [0 Cys]) comprise the strongest genetic risk factor for sporadic Alzheimer's disease (AD); however, the molecular feature(s) and resultant mechanisms that underlie these isoform-dependent effects are unknown. One signature feature of Cys is the capacity to form disulfide (Cys-Cys) bridges, which are required to form disulfide bridge-linked dimers and multimers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!