In a previous experiment it was reported that the intravenous administration of gadolinium chloride (GdCl3) to rats results in a discrete band of interstitial mineralization in the fundic glandular mucosa of the stomach. To investigate the time course for the development of this lesion and its relationship to plasma calcium and phosphate concentrations, 2 experiments were carried out in male Sprague-Dawley rats given a single intravenous dose of 0.07 mmol/kg GdCl3. Plasma calcium and phosphate concentrations approximately doubled between 30 min and 12 hr postdose but had regressed back to near normal values by 24 hr. However, there were no observable clinical signs in treated animals. Histologically, there was progressive mineralization of the lamina propria of the neck region of the fundic glands from 6 hr postdose, forming a distinctive mineral band by 12 hr postdose. At 7 and 14 days postdose the mineral deposits were accompanied by mucous cell hyperplasia, interstitial fibrosis, and a very sparse infiltration of inflammatory cells. By 56 days postdose only occasional mineral deposits remained. Transmission electron microscopy showed mineral first nucleated on collagen in the interstitium, but there was no evidence of cell necrosis. X-ray microanalysis showed that the interstitial mineral was composed of calcium and phosphate in the form of hydroxyapatite; gadolinium (Gd) was only very rarely identified. These findings are consistent with metastatic mineralization. The source, cause, and the exact nature of the excess plasma calcium and phosphate are unknown, and the possible significance of this effect for clinical use of Gd-containing chelates in nuclear magnetic resonance imaging requires further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/019262339702500607 | DOI Listing |
Biomed Mater
January 2025
School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.
Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.
View Article and Find Full Text PDFIndian J Endocrinol Metab
November 2024
Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
Introduction: Data on dietary calcium intake (DCI) from healthy North Indian adults are limited. Hence, the present study aims to assess DCI in healthy community-dwelling adults residing in an affluent North Indian city and correlate with serum biochemical parameters.
Methods: Healthy men and women were recruited from the community by door-to-door surveys.
J Adv Res
January 2025
National Institute of Research and Development for Optoelectronics - INOE 2000, 409 Atomistilor St. 077125 Magurele, Romania. Electronic address:
Introduction: Chronic inflammation leading to implant failure present major challenges in orthopedics, dentistry, and reconstructive surgery. Titanium alloys, while widely used, often provoke inflammatory complications. Zinc-doped calcium phosphate (CaP) coatings offer potential to enhance implant integration by improving corrosion resistance, bioactivity, and immunocompatibility.
View Article and Find Full Text PDFJDS Commun
January 2025
Nutrition, Dietetics and Food Sciences Department, Utah State University, Logan, UT 84322.
The amount of colloidal calcium phosphate (CCP) complex associated with caseins (insoluble [INSOL] Ca) determines the body, texture, flavor, and breakdown of cheese constituents during aging. The continuous pH decline during cheesemaking because of lactic acid fermentation results in solubilization of INSOL Ca. Measuring INSOL Ca in such a dynamic and wide range pH system (6.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Introduction: This study utilized a injectable curcumin (Cur)-infused calcium phosphate silicate cement (CPSC) for addressing defects caused by bone cancer, and evaluated its promoting bone regeneration and exerting cytotoxic effects on osteosarcoma cells.
Methods: The material's physicochemical properties, biocompatibility with osteoblasts, and cytotoxicity toward osteosarcoma cells were rigorously analyzed.
Results: The findings demonstrate that CPSC-Cur signicantly prolongs the setting time, which can be optimized by adding silanized cellulose nanober (CNF-SH) to achieve a balance between workability and mechanical strength.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!