Production of respirable vesicles containing live Legionella pneumophila cells by two Acanthamoeba spp.

Appl Environ Microbiol

Center for the Management, Utilization and Protection of Water Resources, Tennessee Technological University, Cookeville 38505, USA.

Published: January 1998

Two Acanthamoeba species, fed at three temperatures, expelled vesicles containing living Legionella pneumophila cells. Vesicles ranged from 2.1 to 6.4 microns in diameter and theoretically could contain several hundred bacteria. Viable L. pneumophila cells were observed within vesicles which had been exposed to two cooling tower biocides for 24 h. Clusters of bacteria in vesicles were not dispersed by freeze-thawing and sonication. Such vesicles may be agents for the transmission of legionellosis associated with cooling towers, and the risk may be underestimated by plate count methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC124706PMC
http://dx.doi.org/10.1128/AEM.64.1.279-286.1998DOI Listing

Publication Analysis

Top Keywords

pneumophila cells
12
legionella pneumophila
8
vesicles
6
production respirable
4
respirable vesicles
4
vesicles live
4
live legionella
4
cells acanthamoeba
4
acanthamoeba spp
4
spp acanthamoeba
4

Similar Publications

Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.

View Article and Find Full Text PDF

Multiple human and plant pathogens are dispersed and transmitted as bioaerosols (e.g., , SARS-CoV-2, , , spp.

View Article and Find Full Text PDF

Mechanisms of Keap1/Nrf2 modulation in bacterial infections: implications in persistence and clearance.

Front Immunol

January 2025

Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.

Pathogenic bacteria trigger complex molecular interactions in hosts that are characterized mainly by an increase in reactive oxygen species (ROS) as well as an inflammation-associated response. To counteract oxidative damage, cells respond through protective mechanisms to promote resistance and avoid tissue damage and infection; among these cellular mechanisms the activation or inhibition of the nuclear factor E2-related factor 2 (Nrf2) is frequently observed. The transcription factor Nrf2 is considered the regulator of several hundred cytoprotective and antioxidant genes.

View Article and Find Full Text PDF

Diabetes impairs IFNγ-dependent antibacterial defense in the lungs.

Mucosal Immunol

December 2024

Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German center for lung research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany. Electronic address:

Diabetes mellitus is associated with an increased risk of pneumonia, often caused by so-called typical and atypical pathogens including Streptoccocus pneumoniae and Legionella pneumophila, respectively. Here, we employed a variety of mouse models to investigate how diabetes influences pulmonary antibacterial immunity. Following intranasal infection with S.

View Article and Find Full Text PDF

Unlabelled: The eukaryotic CCR4-NOT deadenylase complex is a highly conserved regulator of mRNA metabolism that influences the expression of the complete transcriptome, representing a prime target for a generalist bacterial pathogen. We show that a translocated bacterial effector protein, PieF (Lpg1972) of , directly interacts with the CNOT7/8 nuclease module of CCR4-NOT, with a dissociation constant in the low nanomolar range. PieF is a robust inhibitor of the DEDD-type nuclease, CNOT7, acting in a stoichiometric, dose-dependent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!