Reexpression of aggrecan and type II collagen genes in dedifferentiated adult human articular chondrocytes (AHAC) in suspension culture varied widely depending on the specific lot of bovine serum used to supplement the culture medium. Some lots of serum provided strong induction of aggrecan and type II collagen expression by AHAC while others did not stimulate significant production of these hyaline cartilage extracellular matrix molecules even following several weeks in culture. Addition of 50 ng/ml insulin-like growth factor-I (IGF-I) to a deficient serum lot significantly enhanced its ability to induce aggrecan and type II collagen mRNA. Given this observation, IGF-I and other growth factors were tested in defined serum-free media for their effects on the expression of these genes. Neither IGF-I nor insulin nor transforming growth factor beta (TGF-beta) alone stimulated induction of aggrecan or type II collagen production by dedifferentiated AHAC. However, TGF-beta 1 or TGF-beta 2 combined with IGF-I or insulin provided a strong induction as demonstrated by RNase protection and immunohistochemical assays. Interestingly, type I collagen, previously shown to be downregulated in serum supplemented suspension cultures of articular chondrocytes, persisted for up to 12 weeks in AHAC cultured in defined medium supplemented with TGF-beta and IGF-I.

Download full-text PDF

Source
http://dx.doi.org/10.1006/excr.1997.3781DOI Listing

Publication Analysis

Top Keywords

type collagen
24
aggrecan type
16
articular chondrocytes
12
transforming growth
8
insulin-like growth
8
growth factor-i
8
adult human
8
human articular
8
provided strong
8
strong induction
8

Similar Publications

Gold nanoparticles (AuNPs) play a key role in the field of nanomedicine due to their fascinating plasmonic properties as well as their great biocompatibility. An intriguing application is the use of plasmonic photothermal therapy (PPTT) mediated by anisotropic AuNPs irradiated with a near-infrared (NIR) laser for treating ocular diseases in ophthalmology. For this purpose, bipyramidal-shaped AuNPs (BipyAu), which were surface-functionalized with three different organic ligands (citrate, polystyrene sulphonate (PSS), and cetyltrimethylammonium bromide (CTAB)), were synthesized.

View Article and Find Full Text PDF

Recently, seaweed extracts have been found to have potential in skin benefits. This study, therefore, aimed to explore phytochemical analysis, antimicrobial, antioxidant, and wound healing properties of brown seaweed ethanolic extract (SPEE) on human skin keratinocyte HaCaT cells and the possible mechanism involved. Our results indicated that SPEE contained flavonoid, phenolic, and carotenoid as the major active constituents.

View Article and Find Full Text PDF

In the present study, porcine-derived collagen type I was covalently immobilized on the surface of titanium (Ti) implants via carboxyl groups introduced by bonded p-vinylbenzoic acid to investigate its in vitro biocompatibility with gingival stem cells and in vivo bone regeneration behavior in the edentulous ridges of Lanyu small-ear pigs at weeks 2 and 6 (short-term effectiveness) through micro-computed tomography and histological analysis. Analytical results found that gingival stem cells showed effective adhesion and spreading on these collagen-immobilized implant surfaces. After 2 and 6 weeks of healing, significant differences in Hounsfield units were observed among the control (week 2 (674.

View Article and Find Full Text PDF

The purpose of this study was to investigate the ability of mechanotherapy to enhance recovery or prevent loss of muscle size with atrophy, in female rats. Female F344/BN rats were assigned to weight bearing (WB), hindlimb suspended (HS) for 14 days with reambulation for 7 days without (RA) or with (RAM) mechanotherapy (study 1), or to WB, HS for 7 days, with (HSM) or without mechanotherapy (study 2) to gastrocnemius. Muscle fiber cross sectional area (CSA) and type, collagen, satellite cell number, and protein synthesis (K) and degradation (K) were assessed.

View Article and Find Full Text PDF

Antheraea pernyi silk nanofibrils with inherent RGD motifs accelerate diabetic wound healing: A novel drug-free strategy to promote hemostasis, regulate immunity and improve re-epithelization.

Biomaterials

January 2025

Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. Electronic address:

The chronic inflammation and matrix metalloprotease (MMP)-induced tissue degradation significantly disrupt re-epithelization and delay the healing process of diabetic wounds. To address these issues, we produced nanofibrils from Antheraea pernyi (Ap) silk fibers via a facile and green treatment of swelling and shearing. The integrin receptors on the cytomembrane could specifically bind to the Ap nanofibrils (ApNFs) due to their inherent Arg-Gly-Asp (RGD) motifs, which activated platelets to accelerate coagulation and promoted fibroblast migration, adhesion and spreading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!