Desferrioxamine (DFO) is a common drug used in the treatment of iron overload. In addition to its iron-chelation, other properties have been identified. Alas, DFO has demonstrable effects which cannot be explained by its classically established properties; i.e., DFO protects against DNA single strand breaks induced by tetrachlorohydroquinone (TCHQ), while other iron chelators such as DTPA (diethylenetriaminepentaacetic acid) do not. The autooxidation process of TCHQ yielding the tetrachlorosemiquinone radical (TCSQ.) intermediate, was studied here in the presence of chelators. DFO led to a marked reduction in both concentration and life span of TCSQ. via formation of DFO-nitroxide radical (DFO.). In contrast, DTPA had no detectable effect on TCHQ autooxidation. Present studies indicate that the protective effects of DFO on TCHQ-induced DNA damage were not due to the binding of iron, but rather to scavenging of the reactive TCSQ. and the formation of the less reactive DFO.. An additional mode of action of DFO was identified, via stimulation of the hydrolysis (dechlorination) of tetrachloro-1,4-benzoquinone (chloranil), which is the oxidation product of TCHQ, to form 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid). The results of this study demonstrate two new modes of action for DFO: the scavenging of deleterious semiquinone radical, and the stimulation of the hydrolysis of halogenated substituents on the quinone structure. Both modes might prove highly relevant to the biological activities of DFO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0891-5849(97)00220-7 | DOI Listing |
Lett Appl Microbiol
January 2025
Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, 518100, China.
Bongkrekic acid (BA) toxin, produced by Burkholderia gladioli pathovar cocovenenans bacteria, has been implicated in foodborne illness outbreaks. BA poisoning is associated with rice noodle consumption; hence, this study investigated B. cocovenenans growth and BA production in wet rice noodles comprising varying starch ratios, starch types, rice nutrients, and saccharides.
View Article and Find Full Text PDFMolecules
December 2024
Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA.
Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to inhibit oxidative and inflammatory phenotypes to support enhanced health.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Blonie, Poland.
Chitosan (CS), derived from the partial deacetylation and hydrolysis of chitin, varies in the degree of deacetylation, molecular weight, and origin, influencing its biological effects, including antifungal properties. In plants, CS triggers immune responses and stimulates biomass growth. Previously, we found that the antifungal activity of CS was strongly dependent on its physicochemical properties.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
() infection causes tuberculosis (TB). TB is one of the most intractable infectious diseases, causing over 1.13 million deaths annually.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China. Electronic address:
To date, less attention has been paid to λ-carrageenases and their enzymatic hydrolysates than to κ- and ι-carrageenases and their hydrolysates. In this study, a Gram-negative strain Polaribacter sp. NJDZ03 was isolated from the surface of an Antarctic macroalga, Desmarestia sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!