The heparan sulfate-fibroblast growth factor family: diversity of structure and function.

Prog Nucleic Acid Res Mol Biol

Albert B. Alkek Institute of Biosciences and Technology, Department of Biochemistry and Biophysics, Texas A&M University, Houston 77030, USA.

Published: January 1998

The fibroblast growth factor (FGF) receptor complex is a ubiquitous regulator of development and adult tissue homeostasis that bridges the peri-cellular matrix and the intracellular environment. Diverse members of the FGF polypeptide family, the FGF receptor tyrosine kinase (FGFRTK) family and the FGF receptor heparan sulfate proteoglycan (FGFRHS) family combine to result in active and specific FGFR signal transduction complexes. Regulated alternate splicing and combination of variant subdomains give rise to diversity of FGFRTK monomers. Divalent cations cooperate with the FGFRHS to conformationally restrict FGFRTK trans-phosphorylation, which causes depression of kinase activity and facilitates appropriate activation of the FGFR complex by FGF. Diffusional and conformational molecular models of the oligomeric FGFR complex are presented to explain how different point mutations in the FGFRTK commonly cause craniofacial and skeletal abnormalities of graded severity by graded increases in FGF-independent activity of total FGFR complexes. The role of the FGF family in liver growth and function and in prostate tumor progression is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0079-6603(08)61031-4DOI Listing

Publication Analysis

Top Keywords

fgf receptor
12
growth factor
8
family fgf
8
fgfr complex
8
fgf
6
family
5
heparan sulfate-fibroblast
4
sulfate-fibroblast growth
4
factor family
4
family diversity
4

Similar Publications

Introduction: This study investigated the role of fibroblast growth factor 23 (FGF23)/Klotho in the mortality of patients hospitalized with coronavirus disease 2019 (COVID-19), excluding those with chronic kidney disease (CKD).

Methodology: A prospective cross-sectional study was conducted from April 2021 to May 2022. Patients who tested positive for COVID-19 via polymerase chain reaction and were hospitalized, were classified into two groups (survivors and non-survivors) at the end of their hospital follow-up.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus disease 2019 (COVID-19) outbreak. While mutations cause the emergence of new variants, the ancestral SARS-CoV-2 strain is unique among other strains. Various clinical parameters, the activity of cathepsin proteases, and the concentration of various proteins were measured in urine samples from COVID-19-negative participants and COVID-19-positive participants.

View Article and Find Full Text PDF

Somatic DNA Variants in Epilepsy Surgery Brain Samples from Patients with Lesional Epilepsy.

Int J Mol Sci

January 2025

Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.

Epilepsy affects 50 million people worldwide and is drug-resistant in approximately one-third of cases. Even when a structural lesion is identified as the epileptogenic focus, understanding the underlying genetic causes is crucial to guide both counseling and treatment decisions. Both somatic and germline DNA variants may contribute to the lesion itself and/or influence the severity of symptoms.

View Article and Find Full Text PDF

Microalbuminuria is the earliest clinical abnormality in diabetic kidney disease. High glucose (HG) concentrations are associated with the induction of oxidative stress in podocytes, leading to disruption of the glomerular filtration barrier. Our recent study revealed a significant decrease in the membrane-bound fraction of Klotho in podocytes that were cultured under HG conditions.

View Article and Find Full Text PDF

Following the COVID-19 pandemic, the prevalence of pulmonary fibrosis has increased significantly, placing patients at higher risk and presenting new therapeutic challenges. Current anti-fibrotic drugs, such as Nintedanib, can slow the decline in lung function, but their severe side effects highlight the urgent need for safer and more targeted alternatives. This study explores the anti-fibrotic potential and underlying mechanisms of an endogenous peptide (P5) derived from fibroblast growth factor 2 (FGF2), developed by our research team.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!