ras transformation is associated with decreased expression of the brm/SNF2alpha ATPase from the mammalian SWI-SNF complex.

EMBO J

Unité des Virus Oncogènes, URA1644 du CNRS, Département des Biotechnologies, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France.

Published: January 1998

The brm and BRG-1 proteins are mutually exclusive subunits of the mammalian SWI-SNF complex. Within this complex, they provide the ATPase activity necessary for transcriptional regulation by nucleosome disruption. Both proteins were recently found to interact with the p105Rb tumor suppressor gene product, suggesting a role for the mammalian SWI-SNF complex in the control of cell growth. We show here that the expression of brm, but not BRG-1, is negatively regulated by mitogenic stimulation, and that growth arrest of mouse fibroblasts leads to increased accumulation of the brm protein. The expression of this protein is also down-regulated upon transformation by the ras oncogene. Re-introduction of brm into ras transformed cells leads to partial reversion of the transformed phenotype by a mechanism that depends on the ATPase domain of the protein. Our data suggest that increased levels of brm protein favour the withdrawal of the cell from the cycle whereas decreased expression of the brm gene may facilitate cellular transformation by various oncogenes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170373PMC
http://dx.doi.org/10.1093/emboj/17.1.223DOI Listing

Publication Analysis

Top Keywords

mammalian swi-snf
12
swi-snf complex
12
decreased expression
8
brm brg-1
8
expression brm
8
brm protein
8
brm
6
ras transformation
4
transformation associated
4
associated decreased
4

Similar Publications

The ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1 A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.

View Article and Find Full Text PDF

Epigenetic Regulation Via Electrical Forces.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Multiple epigenetic modulations occur to chromatin rather than to DNA itself and these influence gene expression or gene silencing profoundly. Both the creation of these post-translational modifications and the mechanisms of their readout are regulated significantly by electrical forces several of which are discussed. They are also influenced by phase separation which itself is driven by electrical forces.

View Article and Find Full Text PDF

The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of mutants, revealing the role of BDH in hypocotyl cell elongation.

View Article and Find Full Text PDF

SMARCA4 Deficiency in Lung Cancer: From Signaling Pathway to Potential Therapeutic Targets.

Genes Chromosomes Cancer

January 2025

Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China.

SMARCA4-deficient lung cancer, including thoracic SMARCA4-deficient undifferentiated tumors and SMARCA4-deficient nonsmall-cell lung carcinomas, is a rare and aggressive disease characterized by rapid progression and poor prognosis. This cancer was identified as a distinct entity with specific morphologic and molecular features in the 2021 WHO Classification of Thoracic Tumors. Molecular alterations in SMARCA4 are specific to this type of lung cancer.

View Article and Find Full Text PDF

BRM (SMARCA2) and BRG1 (SMARCA4) are mutually exclusive ATPase subunits of the mSWI/SNF (BAF) chromatin remodeling complex. BAF is an attractive therapeutic target because of its role in transcription, and mutations in the subunits of BAF are common in cancer and neurological disorders. Herein, we report the discovery of compound () as a potent allosteric inhibitor of the dual ATPase subunits from a high-throughput screening hit with a BRM IC of ∼27 μM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!