The ERCC1 protein is essential for nucleotide excision repair in mammalian cells and is also believed to be involved in mitotic recombination. ERCC1-deficient mice, with their extreme runting and polyploid hepatocyte nuclei, have a phenotype that is more reminiscent of a cell cycle arrest/premature ageing disorder than the classic DNA repair deficiency disease, xeroderma pigmentosum. To understand the role of ERCC1 and the link between ERCC1-deficiency and cell cycle arrest, we have studied primary and immortalised embryonic fibroblast cultures from ERCC1-deficient mice and a Chinese hamster ovary ERCC1 mutant cell line. Mutant cells from both species showed the expected nucleotide excision repair deficiency, but the mouse mutant was only moderately sensitive to mitomycin C, indicating that ERCC1 is not essential for the recombination-mediated repair of interstrand cross links in the mouse. Mutant cells from both species had a high mutation frequency and the level of genomic instability was elevated in ERCC1-deficient mouse cells, both in vivo and in vitro. There was no evidence for an homologous recombination deficit in ERCC1 mutant cells from either species. However, the frequency of S-phase-dependent illegitimate chromatid exchange, induced by ultra violet light, was dramatically reduced in both mutants. In rodent cells the G1 arrest induced by ultra violet light is less extensive than in human cells, with the result that replication proceeds on an incompletely repaired template. Illegitimate recombination, resulting in a high frequency of chromatid exchange, is a response adopted by rodent cells to prevent the accumulation of DNA double strand breaks adjacent to unrepaired lesion sites on replicating DNA and allow replication to proceed. Our results indicate an additional role for ERCC1 in this process and we propose the following model to explain the growth arrest and early senescence seen in ERCC1-deficient mice. In the absence of ERCC1, spontaneously occurring DNA lesions accumulate and the failure of the illegitimate recombination process leads to the accumulation of double strand breaks following replication. This triggers the p53 response and the G2 cell cycle arrest, mediated by increased expression of the cyclin-dependent kinase inhibitor p21(cip1/waf1). The increased levels of unrepaired lesions and double strand breaks lead to an increased mutation frequency and genome instability.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.111.3.395DOI Listing

Publication Analysis

Top Keywords

ercc1-deficient mice
16
cell cycle
12
mutant cells
12
cells species
12
double strand
12
strand breaks
12
cells
9
genome instability
8
frequency s-phase-dependent
8
s-phase-dependent illegitimate
8

Similar Publications

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

Failure to repair endogenous DNA damage in β-cells causes adult-onset diabetes in mice.

Aging Biol

October 2023

Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Age is the greatest risk factor for the development of type 2 diabetes mellitus (T2DM). Age-related decline in organ function is attributed to the accumulation of stochastic damage, including damage to the nuclear genome. Islets of T2DM patients display increased levels of DNA damage.

View Article and Find Full Text PDF
Article Synopsis
  • Dietary restriction (DR) is an effective anti-aging method that helps reduce nervous system disorders and neurological decline.
  • Research shows that DR protects specific brain cells, particularly cerebellar Purkinje cells, from damage caused by DNA stress and early aging.
  • In mouse models with targeted DNA repair deficiencies, DR significantly decreased Purkinje cell loss, indicating it helps prevent cell death from internal DNA damage.
View Article and Find Full Text PDF

Inhibition of activin A receptor signalling attenuates age-related pathological cardiac remodelling.

Dis Model Mech

May 2022

Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK.

In the heart, ageing is associated with DNA damage, oxidative stress, fibrosis and activation of the activin signalling pathway, leading to cardiac dysfunction. The cardiac effects of activin signalling blockade in progeria are unknown. This study investigated the cardiac effects of progeria induced by attenuated levels of Ercc1, which is required for DNA excision and repair, and the impact of activin signalling blockade using a soluble activin receptor type IIB (sActRIIB).

View Article and Find Full Text PDF

The 3'-flap endonuclease XPF-ERCC1 promotes alternative end joining and chromosomal translocation during B cell class switching.

Cell Rep

September 2021

Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China. Electronic address:

Robust alternative end joining (A-EJ) in classical non-homologous end joining (c-NHEJ)-deficient murine cells features double-strand break (DSB) end resection and microhomology (MH) usage and promotes chromosomal translocation. The activities responsible for removing 3' single-strand overhangs following resection and MH annealing in A-EJ remain unclear. We show that, during class switch recombination (CSR) in mature mouse B cells, the structure-specific endonuclease complex XPF-ERCC1SLX4, although not required for normal CSR, represents a nucleotide-excision-repair-independent 3' flap removal activity for A-EJ-mediated CSR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!