The v-ski oncogene was introduced into mammalian cells in order to study its biochemical and biological properties. v-Ski, produced at relatively high levels by mouse L cells stably transfected with this DNA, was localized to the cell nucleus, was of correct apparent molecular mass, and was capable of complexing with DNA. Transient transfection of reporter plasmids into control or Ski producing mouse L cells revealed that Ski acts as a transcriptional activator of various transcriptional regulatory elements, including CMVie, RSV LTR and SV40. These results indicate that mouse L cells contain the nuclear cofactor(s) required for the ability of v-Ski to bind to DNA and also suggest that the v-Ski present within the cells is functional.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-1119(97)00439-3 | DOI Listing |
Nanotechnology
January 2025
Nanjing Medical University, Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, 210029, CHINA.
Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.
View Article and Find Full Text PDFSci Adv
January 2025
Aix-Marseille Université, INSERM, UNIS, Marseille, France.
Amblyopia, a highly prevalent loss of visual acuity, is classically thought to result from cortical plasticity. The dorsal lateral geniculate nucleus (dLGN) has long been held to act as a passive relay for visual information, but recent findings suggest a largely underestimated functional plasticity in the dLGN. However, the cellular mechanisms supporting this plasticity have not yet been explored.
View Article and Find Full Text PDFSci Adv
January 2025
Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2 normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
NF2-related schwannomatosis, previously known as neurofibromatosis type 2, is a genetic disorder characterized by nerve tumors due to gene mutations. Mice with deletion develop schwannomas slowly with low penetrance, hence inconvenient for preclinical studies. Here, we show that NF2, by recruiting E3 ubiquitin ligases β-TrCP1/2, promotes WWC1-3 ubiquitination and degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!